結果

問題 No.502 階乗を計算するだけ
ユーザー Kiri8128Kiri8128
提出日時 2020-02-26 00:00:21
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 2,132 bytes
コンパイル時間 323 ms
コンパイル使用メモリ 13,056 KB
実行使用メモリ 33,368 KB
最終ジャッジ日時 2024-10-13 14:40:37
合計ジャッジ時間 18,573 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 44 TLE * 8
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

k = 72
kk = k // 4
K = 1<<k
nu = lambda L: int("".join([hex(K+a)[3:] for a in L[::-1]]), 16)
st = lambda n: hex(n)[2:]
li = lambda s, l, r: [int(a, 16) % P if len(a) else 0 for a in [s[-(i+1)*kk:-i*kk] for i in range(l, r)]]
def grow(d, v, h):
h += [0] * d
f = [(-1 if (i+d) % 2 else 1) * fainv[i] * fainv[d-i] % P * h[i] % P for i in range(d+1)]
nuf = nu(f)
a = d * inv[v] % P
t = [1] * (3*d+3)
for i in range(1, 3*d+3): t[i] = t[i-1] * (a - d + i - 1) % P
ti = [1] * (3*d+3)
ti[-1] = pow(t[-1], P-2, P)
for i in range(1, 3*d+3)[::-1]: ti[i-1] = ti[i] * (a - d + i - 1) % P
iv = [1] * (3*d+3)
for i in range(1, 3*d+3):
iv[i] = ti[i] * t[i-1] % P
###
g = [inv[i] for i in range(1, 2*d+2)]
fg = li(st(nuf * nu(g)), d, d * 2 + 1)
for i in range(d):
h[i+d+1] = fg[i] * fa[d+i+1] % P * fainv[i] % P
###
g = [iv[i] for i in range(1, 2*d+2)]
fg = li(st(nuf * nu(g)), d, d * 2 + 1)
for i in range(d+1):
h[i] = h[i] * (fg[i] * t[d+i+1] % P * ti[i] % P) % P
###
g = [iv[i] for i in range(d+2, 3*d+3)]
fg = li(st(nuf * nu(g)), d, d * 2 + 1)
for i in range(d):
h[i+d+1] = h[i+d+1] * (fg[i] * t[2*d+i+2] % P * ti[d+i+1] % P) % P
return h
# Create a table of the factorial of the first v+2 multiples of v, i.e., [0!, v!, 2v!, ..., (v(v+1))!]
def create_table(v):
s = 1
X = [1, v+1]
while s < v:
X = grow(s, v, X)
s *= 2
table = [1]
for x in X:
table.append(table[-1] * x % P)
return table
def fact(i, table):
a = table[i//v]
for j in range(i//v*v+1, i+1):
a = a * j % P
return a
P = 10**9+7
N = int(input())
if N >= P:
print(0)
else:
v = 1 << (N.bit_length() + 1) // 2
fa = [1] * (2*v+2)
fainv = [1] * (2*v+2)
for i in range(2*v+1):
fa[i+1] = fa[i] * (i+1) % P
fainv[-1] = pow(fa[-1], P-2, P)
for i in range(2*v+1)[::-1]:
fainv[i] = fainv[i+1] * (i+1) % P
inv = [0] * (2*v+2)
for i in range(1, 2*v+2):
inv[i] = fainv[i] * fa[i-1] % P
T = create_table(v)
print(fact(N, T))
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0