結果
問題 | No.502 階乗を計算するだけ |
ユーザー |
![]() |
提出日時 | 2020-02-26 00:00:21 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 2,132 bytes |
コンパイル時間 | 323 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 33,368 KB |
最終ジャッジ日時 | 2024-10-13 14:40:37 |
合計ジャッジ時間 | 18,573 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 44 TLE * 8 |
ソースコード
k = 72kk = k // 4K = 1<<knu = lambda L: int("".join([hex(K+a)[3:] for a in L[::-1]]), 16)st = lambda n: hex(n)[2:]li = lambda s, l, r: [int(a, 16) % P if len(a) else 0 for a in [s[-(i+1)*kk:-i*kk] for i in range(l, r)]]def grow(d, v, h):h += [0] * df = [(-1 if (i+d) % 2 else 1) * fainv[i] * fainv[d-i] % P * h[i] % P for i in range(d+1)]nuf = nu(f)a = d * inv[v] % Pt = [1] * (3*d+3)for i in range(1, 3*d+3): t[i] = t[i-1] * (a - d + i - 1) % Pti = [1] * (3*d+3)ti[-1] = pow(t[-1], P-2, P)for i in range(1, 3*d+3)[::-1]: ti[i-1] = ti[i] * (a - d + i - 1) % Piv = [1] * (3*d+3)for i in range(1, 3*d+3):iv[i] = ti[i] * t[i-1] % P###g = [inv[i] for i in range(1, 2*d+2)]fg = li(st(nuf * nu(g)), d, d * 2 + 1)for i in range(d):h[i+d+1] = fg[i] * fa[d+i+1] % P * fainv[i] % P###g = [iv[i] for i in range(1, 2*d+2)]fg = li(st(nuf * nu(g)), d, d * 2 + 1)for i in range(d+1):h[i] = h[i] * (fg[i] * t[d+i+1] % P * ti[i] % P) % P###g = [iv[i] for i in range(d+2, 3*d+3)]fg = li(st(nuf * nu(g)), d, d * 2 + 1)for i in range(d):h[i+d+1] = h[i+d+1] * (fg[i] * t[2*d+i+2] % P * ti[d+i+1] % P) % Preturn h# Create a table of the factorial of the first v+2 multiples of v, i.e., [0!, v!, 2v!, ..., (v(v+1))!]def create_table(v):s = 1X = [1, v+1]while s < v:X = grow(s, v, X)s *= 2table = [1]for x in X:table.append(table[-1] * x % P)return tabledef fact(i, table):a = table[i//v]for j in range(i//v*v+1, i+1):a = a * j % Preturn aP = 10**9+7N = int(input())if N >= P:print(0)else:v = 1 << (N.bit_length() + 1) // 2fa = [1] * (2*v+2)fainv = [1] * (2*v+2)for i in range(2*v+1):fa[i+1] = fa[i] * (i+1) % Pfainv[-1] = pow(fa[-1], P-2, P)for i in range(2*v+1)[::-1]:fainv[i] = fainv[i+1] * (i+1) % Pinv = [0] * (2*v+2)for i in range(1, 2*v+2):inv[i] = fainv[i] * fa[i-1] % PT = create_table(v)print(fact(N, T))