結果

問題 No.1000 Point Add and Array Add
ユーザー koba-e964koba-e964
提出日時 2020-02-28 21:41:05
言語 Rust
(1.72.1)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 6,734 bytes
コンパイル時間 3,392 ms
コンパイル使用メモリ 111,188 KB
最終ジャッジ日時 2023-08-03 19:52:42
合計ジャッジ時間 4,390 ms
ジャッジサーバーID
(参考情報)
judge13 / judge15
このコードへのチャレンジ(β)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
error: expected one of `!`, `(`, `...`, `..=`, `..`, `::`, `:`, `{`, or `|`, found `,`
  --> Main.rs:79:20
   |
79 |     fn biop(Self::T, Self::T) -> Self::T;
   |                    ^ expected one of 9 possible tokens
   |
   = note: anonymous parameters are removed in the 2018 edition (see RFC 1685)
help: explicitly ignore the parameter name
   |
79 |     fn biop(_: Self::T, Self::T) -> Self::T;
   |             ~~~~~~~~~~

error: expected one of `!`, `(`, `...`, `..=`, `..`, `::`, `:`, `{`, or `|`, found `)`
  --> Main.rs:79:29
   |
79 |     fn biop(Self::T, Self::T) -> Self::T;
   |                             ^ expected one of 9 possible tokens
   |
   = note: anonymous parameters are removed in the 2018 edition (see RFC 1685)
help: explicitly ignore the parameter name
   |
79 |     fn biop(Self::T, _: Self::T) -> Self::T;
   |                      ~~~~~~~~~~

error: expected one of `!`, `(`, `...`, `..=`, `..`, `::`, `:`, `{`, or `|`, found `,`
  --> Main.rs:80:22
   |
80 |     fn update(Self::T, Self::U, height: usize) -> Self::T;
   |                      ^ expected one of 9 possible tokens
   |
   = note: anonymous parameters are removed in the 2018 edition (see RFC 1685)
help: explicitly ignore the parameter name
   |
80 |     fn update(_: Self::T, Self::U, height: usize) -> Self::T;
   |               ~~~~~~~~~~

error: expected one of `!`, `(`, `...`, `..=`, `..`, `::`, `:`, `{`, or `|`, found `,`
  --> Main.rs:80:31
   |
80 |     fn update(Self::T, Self::U, height: usize) -> Self::T;
   |                               ^ expected one of 9 possible tokens
   |
   = note: anonymous parameters are removed in the 2018 edition (see RFC 1685)
help: explicitly ignore the parameter name
   |
80 |     fn update(Self::T, _: Self::U, height: usize) -> Self::T;
   |                        ~~~~~~~~~~

error: aborting due to 4 previous errors

ソースコード

diff #

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    ($($r:tt)*) => {
        let stdin = std::io::stdin();
        let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
        let mut next = move || -> String{
            bytes
                .by_ref()
                .map(|r|r.unwrap() as char)
                .skip_while(|c|c.is_whitespace())
                .take_while(|c|!c.is_whitespace())
                .collect()
        };
        input_inner!{next, $($r)*}
    };
}

macro_rules! input_inner {
    ($next:expr) => {};
    ($next:expr, ) => {};

    ($next:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($next, $t);
        input_inner!{$next $($r)*}
    };
}

macro_rules! read_value {
    ($next:expr, ( $($t:tt),* )) => {
        ( $(read_value!($next, $t)),* )
    };

    ($next:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    };

    ($next:expr, chars) => {
        read_value!($next, String).chars().collect::<Vec<char>>()
    };

    ($next:expr, usize1) => {
        read_value!($next, usize) - 1
    };

    ($next:expr, [ $t:tt ]) => {{
        let len = read_value!($next, usize);
        (0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    }};

    ($next:expr, $t:ty) => {
        $next().parse::<$t>().expect("Parse error")
    };
}

#[allow(unused)]
macro_rules! debug {
    ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
    ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}

/**
 * Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
 * whose elements are elements of monoid T. Note that constructing this tree requires the identity
 * element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
 * Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261
 * Verified by https://codeforces.com/contest/1114/submission/49759034
 */
pub trait ActionRing {
    type T: Clone + Copy; // data
    type U: Clone + Copy + PartialEq + Eq; // action
    fn biop(Self::T, Self::T) -> Self::T;
    fn update(Self::T, Self::U, height: usize) -> Self::T;
    fn upop(fst: Self::U, snd: Self::U) -> Self::U;
    fn e() -> Self::T;
    fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
    n: usize,
    dep: usize,
    dat: Vec<R::T>,
    lazy: Vec<R::U>,
}

impl<R: ActionRing> LazySegTree<R> {
    pub fn new(n_: usize) -> Self {
        let mut n = 1;
        let mut dep = 0;
        while n < n_ { n *= 2; dep += 1; } // n is a power of 2
        LazySegTree {
            n: n,
            dep: dep,
            dat: vec![R::e(); 2 * n - 1],
            lazy: vec![R::upe(); 2 * n - 1]
        }
    }
    #[inline]
    fn lazy_evaluate_node(&mut self, k: usize, height: usize) {
        if self.lazy[k] == R::upe() { return; }
        self.dat[k] = R::update(self.dat[k], self.lazy[k], height);
        if k < self.n - 1 {
            self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
            self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
        }
        self.lazy[k] = R::upe(); // identity for upop
    }
    #[inline]
    fn update_node(&mut self, k: usize) {
        self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);
    }
    fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {
        self.lazy_evaluate_node(k, height);

        // [a,b) and  [l,r) intersects?
        if r <= a || b <= l {return;}
        if a <= l && r <= b {
            self.lazy[k] = R::upop(self.lazy[k], v);
            self.lazy_evaluate_node(k, height);
            return;
        }

        self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);
        self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);
        self.update_node(k);
    }
    /* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
    #[inline]
    pub fn update(&mut self, a: usize, b: usize, v: R::U) {
        let n = self.n;
        let dep = self.dep;
        self.update_sub(a, b, v, 0, dep, 0, n);
    }
    /* l,r are for simplicity */
    fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {
        self.lazy_evaluate_node(k, height);

        // [a,b) and  [l,r) intersect?
        if r <= a || b <= l {return R::e();}
        if a <= l && r <= b {return self.dat[k];}
        let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);
        let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);
        self.update_node(k);
        R::biop(vl, vr)
    }
    /* [a, b) (note: half-inclusive) */
    #[inline]
    pub fn query(&mut self, a: usize, b: usize) -> R::T {
        let n = self.n;
        let dep = self.dep;
        self.query_sub(a, b, 0, dep, 0, n)
    }
}

struct AR;

impl ActionRing for AR {
    type T = (i64, i64); // data
    type U = (i64, i64); // action (c, d) : (a, b) -> (a + d, a * c + b)
    fn biop(x: Self::T, y: Self::T) -> Self::T {
        (x.0 + y.0, x.1 + y.1)
    }
    fn update(x: Self::T, (c, d): Self::U, _height: usize) -> Self::T {
        (x.0 + d, x.0 * c + x.1)
    }
    fn upop(fst: Self::U, snd: Self::U) -> Self::U {
        (fst.0 + snd.0, fst.1 * snd.0 + snd.1)
    }
    fn e() -> Self::T {
        (0, 0)
    }
    fn upe() -> Self::U {
        (0, 0)
    }
}

fn solve() {
    let out = std::io::stdout();
    let mut out = BufWriter::new(out.lock());
    macro_rules! puts {
        ($($format:tt)*) => (let _ = write!(out,$($format)*););
    }
    input! {
        n: usize, q: usize,
        a: [i64; n],
        cxy: [(chars, usize1, usize1); q],
    }
    let mut st = LazySegTree::<AR>::new(n);
    for i in 0..n {
        st.update(i, i + 1, (0, a[i]));
    }
    for &(ref c, x, y) in &cxy {
        if c == &['A'] {
            let y = (y + 1) as i64;
            st.update(x, x + 1, (0, y));
        } else {
            st.update(x, y + 1, (1, 0));
        }
    }
    for i in 0..n {
        let (_, a) = st.query(i, i + 1);
        puts!("{}{}", a, if i + 1 == n { "\n" } else { " " });
    }
}

fn main() {
    // In order to avoid potential stack overflow, spawn a new thread.
    let stack_size = 104_857_600; // 100 MB
    let thd = std::thread::Builder::new().stack_size(stack_size);
    thd.spawn(|| solve()).unwrap().join().unwrap();
}
0