結果
問題 | No.1001 注文の多い順列 |
ユーザー |
![]() |
提出日時 | 2020-02-28 23:06:34 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 81 ms / 2,000 ms |
コード長 | 11,278 bytes |
コンパイル時間 | 3,147 ms |
コンパイル使用メモリ | 212,940 KB |
最終ジャッジ日時 | 2025-01-09 03:11:35 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 31 |
ソースコード
#pragma GCC optimize ("Ofast")#include<bits/stdc++.h>using namespace std;#define MD (1000000007U)void *wmem;char memarr[96000000];template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );(*arr)=(T*)(*mem);(*mem)=((*arr)+x);}struct Modint{unsigned val;Modint(){val=0;}Modint(int a){val = ord(a);}Modint(unsigned a){val = ord(a);}Modint(long long a){val = ord(a);}Modint(unsigned long long a){val = ord(a);}inline unsigned ord(unsigned a){return a%MD;}inline unsigned ord(int a){a %= (int)MD;if(a < 0){a += MD;}return a;}inline unsigned ord(unsigned long long a){return a%MD;}inline unsigned ord(long long a){a %= (int)MD;if(a < 0){a += MD;}return a;}inline unsigned get(){return val;}inline Modint &operator+=(Modint a){val += a.val;if(val >= MD){val -= MD;}return *this;}inline Modint &operator-=(Modint a){if(val < a.val){val = val + MD - a.val;}else{val -= a.val;}return *this;}inline Modint &operator*=(Modint a){val = ((unsigned long long)val*a.val)%MD;return *this;}inline Modint &operator/=(Modint a){return *this *= a.inverse();}inline Modint operator+(Modint a){return Modint(*this)+=a;}inline Modint operator-(Modint a){return Modint(*this)-=a;}inline Modint operator*(Modint a){return Modint(*this)*=a;}inline Modint operator/(Modint a){return Modint(*this)/=a;}inline Modint operator+(int a){return Modint(*this)+=Modint(a);}inline Modint operator-(int a){return Modint(*this)-=Modint(a);}inline Modint operator*(int a){return Modint(*this)*=Modint(a);}inline Modint operator/(int a){return Modint(*this)/=Modint(a);}inline Modint operator+(long long a){return Modint(*this)+=Modint(a);}inline Modint operator-(long long a){return Modint(*this)-=Modint(a);}inline Modint operator*(long long a){return Modint(*this)*=Modint(a);}inline Modint operator/(long long a){return Modint(*this)/=Modint(a);}inline Modint operator-(void){Modint res;if(val){res.val=MD-val;}else{res.val=0;}return res;}inline operator bool(void){return val!=0;}inline operator int(void){return get();}inline operator long long(void){return get();}inline Modint inverse(){int a = val;int b = MD;int u = 1;int v = 0;int t;Modint res;while(b){t = a / b;a -= t * b;swap(a, b);u -= t * v;swap(u, v);}if(u < 0){u += MD;}res.val = u;return res;}inline Modint pw(unsigned long long b){Modint a(*this);Modint res;res.val = 1;while(b){if(b&1){res *= a;}b >>= 1;a *= a;}return res;}inline bool operator==(int a){return ord(a)==val;}inline bool operator!=(int a){return ord(a)!=val;}};inline Modint operator+(int a, Modint b){return Modint(a)+=b;}inline Modint operator-(int a, Modint b){return Modint(a)-=b;}inline Modint operator*(int a, Modint b){return Modint(a)*=b;}inline Modint operator/(int a, Modint b){return Modint(a)/=b;}inline Modint operator+(long long a, Modint b){return Modint(a)+=b;}inline Modint operator-(long long a, Modint b){return Modint(a)-=b;}inline Modint operator*(long long a, Modint b){return Modint(a)*=b;}inline Modint operator/(long long a, Modint b){return Modint(a)/=b;}inline void rd(int &x){int k;int m=0;x=0;for(;;){k = getchar_unlocked();if(k=='-'){m=1;break;}if('0'<=k&&k<='9'){x=k-'0';break;}}for(;;){k = getchar_unlocked();if(k<'0'||k>'9'){break;}x=x*10+k-'0';}if(m){x=-x;}}inline void wt_L(char a){putchar_unlocked(a);}inline void wt_L(int x){int s=0;int m=0;char f[10];if(x<0){m=1;x=-x;}while(x){f[s++]=x%10;x/=10;}if(!s){f[s++]=0;}if(m){putchar_unlocked('-');}while(s--){putchar_unlocked(f[s]+'0');}}inline void wt_L(unsigned x){int s=0;char f[10];while(x){f[s++]=x%10;x/=10;}if(!s){f[s++]=0;}while(s--){putchar_unlocked(f[s]+'0');}}inline void wt_L(long long x){int s=0;int m=0;char f[20];if(x<0){m=1;x=-x;}while(x){f[s++]=x%10;x/=10;}if(!s){f[s++]=0;}if(m){putchar_unlocked('-');}while(s--){putchar_unlocked(f[s]+'0');}}inline void wt_L(unsigned long long x){int s=0;char f[21];while(x){f[s++]=x%10;x/=10;}if(!s){f[s++]=0;}while(s--){putchar_unlocked(f[s]+'0');}}inline void wt_L(Modint x){int i;i = (int)x;wt_L(i);}inline void wt_L(double x){printf("%.15f",x);}inline void wt_L(const char c[]){int i=0;for(i=0;c[i]!='\0';i++){putchar_unlocked(c[i]);}}inline void wt_L(string &x){int i=0;for(i=0;x[i]!='\0';i++){putchar_unlocked(x[i]);}}template<class S, class T> inline S chmax(S &a, T b){if(a<b){a=b;}return a;}template<class T> struct Comb{int mem_fact;T *factri;T *ifactri;Comb(){mem_fact = 0;}inline void expand_fact(int k){if(k <= mem_fact){return;}chmax(k, 2* mem_fact);if(mem_fact == 0){int i;factri = (T*)malloc(k * sizeof(T));ifactri = (T*)malloc(k * sizeof(T));factri[0] = 1;for(i=(1);i<(k);i++){factri[i] = i * factri[i-1];}ifactri[k-1] = 1 / factri[k-1];for(i=(k-1)-1;i>=(0);i--){ifactri[i] = (i+1) * ifactri[i+1];}}else{int i;factri = (T*)realloc(factri, k * sizeof(T));ifactri = (T*)realloc(ifactri, k * sizeof(T));for(i=(mem_fact);i<(k);i++){factri[i] = i * factri[i-1];}ifactri[k-1] = 1 / factri[k-1];for(i=(k-1)-1;i>=(mem_fact);i--){ifactri[i] = (i+1) * ifactri[i+1];}}mem_fact = k;}inline T fac(int k){if(mem_fact < k+1){expand_fact(k+1);}return factri[k];}inline T ifac(int k){if(mem_fact < k+1){expand_fact(k+1);}return ifactri[k];}inline T C(int a, int b){if(b < 0 || b > a){return 0;}if(mem_fact < a+1){expand_fact(a+1);}return factri[a] * ifactri[b] * ifactri[a-b];}inline T P(int a, int b){if(b < 0 || b > a){return 0;}if(mem_fact < a+1){expand_fact(a+1);}return factri[a] * ifactri[a-b];}inline T H(int a, int b){if(a==0 && b==0){return 1;}if(a <= 0 || b < 0){return 0;}if(mem_fact < a+b){expand_fact(a+b);}return C(a+b-1, b);}inline T Multinomial(int sz, int a[]){int i;int s = 0;T res;for(i=(0);i<(sz);i++){s += a[i];}if(mem_fact < s+1){expand_fact(s+1);}res = factri[s];for(i=(0);i<(sz);i++){res *= ifactri[a[i]];}return 1;}inline T Multinomial(int a){return 1;}inline T Multinomial(int a, int b){if(mem_fact < a+b+1){expand_fact(a+b+1);}return factri[a+b] * ifactri[a] * ifactri[b];}inline T Multinomial(int a, int b, int c){if(mem_fact < a+b+c+1){expand_fact(a+b+c+1);}return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];}inline T Multinomial(int a, int b, int c, int d){if(mem_fact < a+b+c+d+1){expand_fact(a+b+c+d+1);}return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];}inline T Catalan(int n){if(n < 0){return 0;}if(mem_fact < 2*n+1){expand_fact(2*n+1);}return factri[2*n] * ifactri[n] * ifactri[n+1];}inline T C_s(long long a, long long b){long long i;T res;if(b < 0 || b > a){return 0;}if(b > a - b){b = a - b;}res = 1;for(i=(0);i<(b);i++){res *= a - i;res /= i + 1;}return res;}inline T P_s(long long a, long long b){long long i;T res;if(b < 0 || b > a){return 0;}res = 1;for(i=(0);i<(b);i++){res *= a - i;}return res;}inline T per_s(long long n, long long k){T d;int m;if(n < 0 || k < 0){return 0;}if(n == k && k == 0){return 1;}if(n == 0 || k == 0){return 0;}if(k==1){return 1;}if(k==2){d = n / 2;return d;}if(k==3){d = (n-1) / 6;m = (n-1) % 6;if(m==0){return 3 * d * d + d;}if(m==1){return 3 * d * d + 2 * d;}if(m==2){return 3 * d * d + 3 * d + 1;}if(m==3){return 3 * d * d + 4 * d + 1;}if(m==4){return 3 * d * d + 5 * d + 2;}if(m==5){return 3 * d * d + 6 * d + 3;}}assert(0 && "per_s should be k <= 3");return -1;}};int N;int T;int X;int As;int A[3000];int ac[3001];int Bs;int B[3000];int bc[3001];Modint dp[3001][3001];int vis[3001][3001];Modint solve(int x, int y){int k = x + y;Modint res = 0;if(vis[x][y]){return dp[x][y];}vis[x][y] = 1;if(k==N){return dp[x][y] = 1;}if(x < As && ac[k] - (As-1-x) > 0){res += solve(x+1, y) * (ac[k] - (As-1-x));}if(y < Bs && bc[k] - y > 0){res += solve(x, y+1) * (bc[k] - y);}return dp[x][y] = res;}int main(){int i;wmem = memarr;Modint res;Comb<Modint> c;rd(N);for(i=(0);i<(N);i++){rd(T);rd(X);if(T==0){A[As++] = X;}if(T==1){B[Bs++] = N-X+1;}}for(i=(0);i<(As);i++){int j;for(j=(0);j<(A[i]);j++){ac[j]++;}}for(i=(0);i<(Bs);i++){int j;for(j=(0);j<(B[i]);j++){bc[N-1-j]++;}}wt_L(solve(0,0));wt_L('\n');return 0;}// cLay varsion 20200227-1// --- original code ---// int N, T, X;// int As, A[3000], ac[3001];// int Bs, B[3000], bc[3001];// Modint dp[3001][3001];// int vis[3001][3001];//// Modint solve(int x, int y){// int k = x + y;// Modint res = 0;//// if(vis[x][y]) return dp[x][y];// vis[x][y] = 1;// if(k==N) return dp[x][y] = 1;//// if(x < As && ac[k] - (As-1-x) > 0) res += solve(x+1, y) * (ac[k] - (As-1-x));// if(y < Bs && bc[k] - y > 0) res += solve(x, y+1) * (bc[k] - y);//// return dp[x][y] = res;// }//// {// Modint res;// Comb<Modint> c;//// rd(N);// rep(i,N){// rd(T,X);// if(T==0) A[As++] = X;// if(T==1) B[Bs++] = N-X+1;// }// rep(i,As) rep(j,A[i]) ac[j]++;// rep(i,Bs) rep(j,B[i]) bc[N-1-j]++;//// wt(solve(0,0));// }