結果

問題 No.1038 TreeAddQuery
ユーザー ei1333333ei1333333
提出日時 2020-03-02 03:02:52
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 6,212 bytes
コンパイル時間 3,163 ms
コンパイル使用メモリ 231,876 KB
最終ジャッジ日時 2025-01-09 03:47:04
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample WA * 3
other WA * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
const int64 infll = (1LL << 58) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
template< typename T >
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template< typename T >
using Edges = vector< edge< T > >;
template< typename T >
using WeightedGraph = vector< Edges< T > >;
using UnWeightedGraph = vector< vector< int > >;
template< typename T >
using Matrix = vector< vector< T > >;
template< class T >
struct BinaryIndexedTree {
vector< T > data;
BinaryIndexedTree() = default;
BinaryIndexedTree(int sz) {
data.assign(++sz, 0);
}
T sum(int k) {
T ret = 0;
for(++k; k > 0; k -= k & -k) ret += data[k];
return (ret);
}
void add(int k, T x) {
for(++k; k < data.size(); k += k & -k) data[k] += x;
}
};
template< typename G >
struct CentroidDecomposition {
const G &g;
vector< int > sub;
vector< bool > v;
CentroidDecomposition(const G &g) : g(g), sub(g.size()), v(g.size()) {}
inline int build_dfs(int idx, int par) {
sub[idx] = 1;
for(auto &to : g[idx]) {
if(to == par || v[to]) continue;
sub[idx] += build_dfs(to, idx);
}
return sub[idx];
}
inline int search_centroid(int idx, int par, const int mid) {
for(auto &to : g[idx]) {
if(to == par || v[to]) continue;
if(sub[to] > mid) return search_centroid(to, idx, mid);
}
return idx;
}
inline int build(UnWeightedGraph &t, int idx) {
int centroid = search_centroid(idx, -1, build_dfs(idx, -1) / 2);
v[centroid] = true;
for(auto &to : g[centroid]) {
if(!v[to]) t[centroid].emplace_back(build(t, to));
}
v[centroid] = false;
return centroid;
}
inline int build(UnWeightedGraph &t) {
t.resize(g.size());
return build(t, 0);
}
};
int main() {
int N, Q;
cin >> N >> Q;
UnWeightedGraph g(N);
for(int i = 1; i < N; i++) {
int a, b;
cin >> a >> b;
--a, --b;
g[a].emplace_back(b);
g[b].emplace_back(a);
}
CentroidDecomposition< UnWeightedGraph > cd(g);
UnWeightedGraph t;
vector< int > used(N);
vector< vector< vector< pair< int, int > > > > subinfo(N, vector< vector< pair< int, int > > >(1));
vector< vector< tuple< int, int, int, int > > > belong(N);
vector< BinaryIndexedTree< int64 > > bit(N);
MFP([&](auto rec, int centroid) -> void {
used[centroid] = true;
// BFS Euler Tour
queue< tuple< int, int, int, int > > que;
auto &subgraph = subinfo[centroid];
int sz = 1, par_id = 0;
belong[centroid].emplace_back(centroid, 0, 0, -1);
for(auto &to : g[centroid]) {
if(!used[to]) que.emplace(to, centroid, par_id++, 1);
}
while(!que.empty()) {
int idx, p, top, dep;
tie(idx, p, top, dep) = que.front();
que.pop();
while(subgraph.size() <= dep) subgraph.emplace_back();
subgraph[dep].emplace_back(top, sz);
belong[idx].emplace_back(centroid, dep, sz++, top);
for(auto &to : g[idx]) {
if(used[to] || to == p) continue;
que.emplace(to, idx, top, dep + 1);
}
}
bit[centroid] = BinaryIndexedTree< int64 >(sz + 1);
for(auto &to : t[centroid]) rec(to);
used[centroid] = false;
})(cd.build(t));
while(Q--) {
int X, Y, Z;
cin >> X >> Y >> Z;
--X;
int64 ret = 0;
for(auto &p : belong[X]) {
int centroid, dep, id, top;
tie(centroid, dep, id, top) = p;
ret += bit[centroid].sum(id);
int rest_dep = Y - dep;
if(rest_dep < 0) continue;
if(rest_dep == 0) {
bit[centroid].add(0, +Z);
bit[centroid].add(1, -Z);
} else if(rest_dep < subinfo[centroid].size()) {
auto &v = subinfo[centroid][rest_dep];
bit[centroid].add(v.front().second, +Z);
bit[centroid].add(v.back().second + 1, -Z);
int x = lower_bound(begin(v), end(v), make_pair(top, -1)) - begin(v);
int y = (int) (lower_bound(begin(v), end(v), make_pair(top, inf)) - begin(v)) - 1;
bit[centroid].add(v[x].second, -Z);
bit[centroid].add(v[y].second + 1, +Z);
}
}
cout << ret << "\n";
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0