結果
問題 | No.252 "良問"(良問とは言っていない (2) |
ユーザー | ysuzuki5321 |
提出日時 | 2020-03-05 09:15:09 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 117 ms / 2,000 ms |
コード長 | 20,530 bytes |
コンパイル時間 | 2,151 ms |
コンパイル使用メモリ | 151,112 KB |
実行使用メモリ | 15,360 KB |
最終ジャッジ日時 | 2024-10-14 00:46:52 |
合計ジャッジ時間 | 3,290 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 66 ms
5,248 KB |
testcase_01 | AC | 117 ms
5,620 KB |
testcase_02 | AC | 75 ms
7,092 KB |
testcase_03 | AC | 79 ms
15,360 KB |
testcase_04 | AC | 80 ms
15,356 KB |
testcase_05 | AC | 81 ms
15,228 KB |
testcase_06 | AC | 2 ms
5,248 KB |
ソースコード
#include <stdio.h> #include <sstream> #include <iostream> #include <fstream> #include <string.h> #include <vector> #include <map> #include <algorithm> #include <utility> #include <set> #include <cctype> #include <queue> #include <stack> #include <cstdio> #include <cstdlib> #include <cmath> #include <deque> #include <limits> #include <iomanip> #include <ctype.h> #include <unordered_map> #include <random> #include <bitset> #define _USE_MATH_DEFINES #include <iostream> #include <math.h> #include <complex> using namespace std; typedef long long ll; typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef pair<ll, double> pld; typedef pair<double, double> pdd; typedef pair<double, ll> pdl; typedef pair<int, char> pic; typedef vector<ll> vl; typedef vector<int> vi; typedef complex<double> Point; typedef priority_queue<ll, vector<ll>, greater<ll>> llgreaterq; typedef priority_queue<pll, vector<pll>, greater<pll>> pllgreaterq; typedef priority_queue<pair<ll, pll>, vector<pair<ll, pll>>, greater<pair<ll, pll>>> plpllgreaterq; typedef priority_queue<vi, vector<vi>, greater<vi>> vigreaterq; typedef priority_queue<vl, vector<vl>, greater<vl >> vlgreaterq; #define bit(x,v) ((ll)x << v) #define rep(x,v) for(int x=0;x<v;x++) #define rep2(x,f,v) for(int x=f;x<v;x++) // 許容する誤差ε #define EPS (1e-10) // 2つのスカラーが等しいかどうか #define EQ(a,b) (abs((a)-(b)) < EPS) // 2つのベクトルが等しいかどうか #define EQV(a,b) ( EQ((a).real(), (b).real()) && EQ((a).imag(), (b).imag()) ) const ll INF = 1000000007; const int MAX = 2000010; const int MOD = 1000000007; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } int pr[200010]; int lank[200010]; void uini(int n) { for (size_t i = 0; i <= n; i++) { pr[i] = i; } } int parent(int x) { if (x == pr[x]) return x; return pr[x] = parent(pr[x]); } int same(int x, int y) { return parent(x) == parent(y); } bool unit(int x, int y) { int px = parent(x); int py = parent(y); if (px == py) return false; if (lank[px] < lank[py]) { pr[py] = px; lank[px] += lank[py] + 1; } else { pr[px] = py; lank[py] += lank[px] + 1; } return true; } ll bit[200010]; int max_n = 200000; int pm = 0; void add(int x) { while (max_n >= x) { bit[x]++; x += x & -x; } } void sub(int x) { while (max_n >= x) { bit[x]--; x += x & -x; } } ll merge(ll* a, int left, int mid, int right) { ll n1 = mid - left; ll n2 = right - mid; vector<int> L(n1 + 1); vector<int> R(n2 + 1); for (size_t i = 0; i < n1; i++) { L[i] = a[left + i]; } for (size_t i = 0; i < n2; i++) { R[i] = a[mid + i]; } L[n1] = INF; R[n2] = INF; ll i = 0; ll j = 0; ll r = 0; for (size_t k = left; k < right; k++) { if (L[i] <= R[j]) { a[k] = L[i]; i++; } else { a[k] = R[j]; r += n1 - i; j++; } } return r; } ll merge2(pair<int, char>* a, int left, int mid, int right) { ll n1 = mid - left; ll n2 = right - mid; vector<pair<int, char>> L(n1 + 1); vector<pair<int, char>> R(n2 + 1); for (size_t i = 0; i < n1; i++) { L[i] = a[left + i]; } for (size_t i = 0; i < n2; i++) { R[i] = a[mid + i]; } L[n1] = make_pair(INF, ' '); R[n2] = make_pair(INF, ' '); ll i = 0; ll j = 0; ll r = 0; for (size_t k = left; k < right; k++) { if (L[i].first <= R[j].first) { a[k] = L[i]; i++; } else { a[k] = R[j]; r += n1 - i; j++; } } return r; } ll mergeSort2(pair<int, char>* a, int left, int right) { ll res = 0; if (left + 1 < right) { int mid = (left + right) / 2; res = mergeSort2(a, left, mid); res += mergeSort2(a, mid, right); res += merge2(a, left, mid, right); } return res; } ll mergeSort(ll* a, int left, int right) { ll res = 0; if (left + 1 < right) { int mid = (left + right) / 2; res = mergeSort(a, left, mid); res += mergeSort(a, mid, right); res += merge(a, left, mid, right); } return res; } int partition(pair<int, char>* a, int p, int r) { pair<int, char> x = a[r]; int i = p - 1; for (size_t j = p; j < r; j++) { if (a[j].first <= x.first) { i++; swap(a[i], a[j]); } } swap(a[i + 1], a[r]); return i + 1; } void quick(pair<int, char>* a, int p, int r) { if (p < r) { int q = partition(a, p, r); quick(a, p, q - 1); quick(a, q + 1, r); } } ll n; int ci = 0; ll P[1000010]; struct Node { int key; int priority; Node* parent, * left, * right; Node(int key, int priority); Node() {} }; Node NIL; Node::Node(int key, int priority) : key(key), priority(priority) { left = &NIL; right = &NIL; } Node* root = new Node(); void cenrec(Node* k) { if (k->key == NIL.key) return; cenrec(k->left); cout << " " << k->key; cenrec(k->right); } void fastrec(Node* k) { if (k->key == NIL.key) return; cout << " " << k->key; fastrec(k->left); fastrec(k->right); } void insert(Node* v) { Node* y = &NIL; Node* x = root; while (x->key != NIL.key) { y = x; if (v->key < x->key) { x = x->left; } else { x = x->right; } } v->parent = y; if (y->key == NIL.key) { root = v; } else if (v->key < y->key) { y->left = v; } else { y->right = v; } } Node* find(Node* k, ll v) { if (k->key == NIL.key) return &NIL; if (k->key == v) return k; if (v < k->key) return find(k->left, v); return find(k->right, v); } void delp12(Node* x) { if (x->key == NIL.key) return; Node* l = x->left; Node* r = x->right; Node* pr = x->parent; if (l->key == NIL.key && r->key == NIL.key) { if (pr->left == x) { pr->left = &NIL; } else pr->right = &NIL; } else if (l->key != NIL.key) { if (pr->left == x) { pr->left = l; } else pr->right = l; l->parent = pr; } else if (r->key != NIL.key) { if (pr->left == x) { pr->left = r; } else pr->right = r; r->parent = pr; } } Node* get_next(Node* k) { if (k->key == NIL.key) return &NIL; Node* res = get_next(k->left); if (res->key != NIL.key) return res; return k; } void del(Node* x) { if (x->key == NIL.key) return; Node* l = x->left; Node* r = x->right; Node* pr = x->parent; if (l->key != NIL.key && r->key != NIL.key) { Node* nex = get_next(r); x->key = nex->key; delp12(nex); } else { delp12(x); } } Node* rightRotate(Node* t) { Node* s = t->left; t->left = s->right; s->right = t; return s; } Node* leftRotate(Node* t) { Node* s = t->right; t->right = s->left; s->left = t; return s; } Node* _insert(Node* t, int key, int priority) { if (t->key == NIL.key) { return new Node(key, priority); } if (key == t->key) { return t; } if (key < t->key) { t->left = _insert(t->left, key, priority); if (t->priority < t->left->priority) { t = rightRotate(t); } } else { t->right = _insert(t->right, key, priority); if (t->priority < t->right->priority) { t = leftRotate(t); } } return t; } Node* delete1(Node* t, int key); Node* _delete(Node* t, int key) { if (t->left->key == NIL.key && t->right->key == NIL.key) { return &NIL; } else if (t->left->key == NIL.key) { t = leftRotate(t); } else if (t->right->key == NIL.key) { t = rightRotate(t); } else { if (t->left->priority > t->right->priority) { t = rightRotate(t); } else t = leftRotate(t); } return delete1(t, key); } Node* delete1(Node* t, int key) { if (t->key == NIL.key) { return &NIL; } if (key < t->key) { t->left = delete1(t->left, key); } else if (key > t->key) { t->right = delete1(t->right, key); } else return _delete(t, key); return t; } int H; int left(int i) { return i * 2 + 1; } int right(int i) { return i * 2 + 2; } // 内積 (dot product) : a・b = |a||b|cosΘ double dot(Point a, Point b) { return (a.real() * b.real() + a.imag() * b.imag()); } // 外積 (cross product) : a×b = |a||b|sinΘ double cross(Point a, Point b) { return (a.real() * b.imag() - a.imag() * b.real()); } // 2直線の直交判定 : a⊥b <=> dot(a, b) = 0 int is_orthogonal(Point a1, Point a2, Point b1, Point b2) { return EQ(dot(a1 - a2, b1 - b2), 0.0); } // 2直線の平行判定 : a//b <=> cross(a, b) = 0 int is_parallel(Point a1, Point a2, Point b1, Point b2) { return EQ(cross(a1 - a2, b1 - b2), 0.0); } // 点cが直線a,b上にあるかないか int is_point_on_line(Point a, Point b, Point c) { return EQ(cross(b - a, c - a), 0.0); } // 点cが線分a,b上にあるかないか(1) int is_point_on_line1(Point a, Point b, Point c) { return EQ(cross(b - a, c - a), 0.0) && (dot(b - a, c - a) > -EPS) && (dot(a - b, c - b) > -EPS); } // 点cが線分a,b上にあるかないか(2) int is_point_on_line2(Point a, Point b, Point c) { // |a-c| + |c-b| <= |a-b| なら線分上 return (abs(a - c) + abs(c - b) < abs(a - b) + EPS); } // 点a,bを通る直線と点cとの距離 double distance_l_p(Point a, Point b, Point c) { return abs(cross(b - a, c - a)) / abs(b - a); } // 点a,bを端点とする線分と点cとの距離 double distance_ls_p(Point a, Point b, Point c) { if (dot(b - a, c - a) < EPS) return abs(c - a); if (dot(a - b, c - b) < EPS) return abs(c - b); return abs(cross(b - a, c - a)) / abs(b - a); } // a1,a2を端点とする線分とb1,b2を端点とする線分の交差判定 int is_intersected_ls(Point a1, Point a2, Point b1, Point b2) { return (cross(a2 - a1, b1 - a1) * cross(a2 - a1, b2 - a1) < EPS) && (cross(b2 - b1, a1 - b1) * cross(b2 - b1, a2 - b1) < EPS); } // a1,a2を端点とする線分とb1,b2を端点とする線分の交点計算 Point intersection_ls(Point a1, Point a2, Point b1, Point b2) { Point b = b2 - b1; double d1 = abs(cross(b, a1 - b1)); double d2 = abs(cross(b, a2 - b1)); double t = d1 / (d1 + d2); return a1 + (a2 - a1) * t; } // a1,a2を通る直線とb1,b2を通る直線の交差判定 int is_intersected_l(Point a1, Point a2, Point b1, Point b2) { return !EQ(cross(a1 - a2, b1 - b2), 0.0); } // a1,a2を通る直線とb1,b2を通る直線の交点計算 Point intersection_l(Point a1, Point a2, Point b1, Point b2) { Point a = a2 - a1; Point b = b2 - b1; return a1 + a * cross(b, b1 - a1) / cross(b, a); } //円の交点 pair<Point, Point> intersection_circle(Point p1, Point p2, double r1, double r2) { double d = abs(p2 - p1); double th = acos((d * d + r1 * r1 - r2 * r2) / (2 * d * r1)); return make_pair(p1 + polar(r1, arg(p2 - p1) + th), polar(r1, arg(p2 - p1) - th)); } ll heap[2000010]; void maxHeapify(int i) { int l = left(i); int r = right(i); int largest = 0; if (l < H && heap[l] > heap[i]) largest = l; else largest = i; if (r < H && heap[r] > heap[largest]) largest = r; if (largest != i) { swap(heap[i], heap[largest]); maxHeapify(largest); } } int pare(int i) { return (i - 1) / 2; } void raise(int i) { int l = pare(i); if (l < 0) return; if (heap[l] < heap[i]) { swap(heap[i], heap[l]); raise(l); } } void minHeapify(int i) { int l = left(i); int r = right(i); int minimam = 0; if (l < H && heap[l] < heap[i]) minimam = l; else minimam = i; if (r < H && heap[r] < heap[minimam]) minimam = r; if (minimam != i) { swap(heap[i], heap[minimam]); minHeapify(minimam); } } void buildMaxHeap() { for (int i = H / 2; i >= 0; i--) { maxHeapify(i); } } int dx[] = { -1,0,1,0 }; int dy[] = { 0,-1,0,1 }; std::vector<int> find_all(const std::string str, const std::string subStr) { std::vector<int> result; int subStrSize = subStr.size(); int pos = str.find(subStr); while (pos != std::string::npos) { result.push_back(pos); pos = str.find(subStr, pos + 1); } return result; } //ll memo[100010]; //ll next[100010]; //ll dm[100010]; //int f[100010]; //ll rec(int x) { // // if (~memo[x]) return memo[x]; // if (x == n) { // dm[n] = 1; // return 1; // } // ll *res = &memo[x]; // *res = 0; // set<int> st; // st.insert(f[x]); // for (int i = x + 1; i <= n; i++) // { // if (~memo[i]) { // *res += memo[i] + 1; // *res %= INF; // break; // } // // *res += rec(i); // *res %= INF; // if (st.find(f[i]) != st.end()) {break; } // st.insert(f[i]); // } // // return *res; //} #define bit(x,v) ((ll)x << v) class BIT { static const int MAX_N = 1000010; public: BIT() { memset(bit, 0, sizeof(bit)); } int bit[MAX_N + 1], n; int sum(int i) { int s = 0; while (i > 0) { s += bit[i]; i -= i & -i; } return s; } void add(int i, int x) { while (i <= n) { bit[i] += x; i += i & -i; } } void clear() { memset(bit, 0, sizeof(bit)); } int a[MAX_N]; void bable_swap_count() { ll ans = 0; for (size_t j = 0; j < n; j++) { ans += j - sum(a[j]); add(a[j], 1); } printf("%lld\n", ans); } int search(int s, int x) { ll half = (s + x) / 2; ll sh = sum(x); ll sl = sum(half); ll st = sum(s); if (sh - sl == 0) { return x; } if (sh - sl < x - half) { return search(half, x); } if (sl - st == 0) { return half; } if (sl - st < half - s) { return search(s, half); } return -1; } int lankSearch(int lank) { return lankSearch(lank, 0, MAX_N); } int lankSearch(int lank, int s, int t) { ll half = (s + t) / 2; ll v = sum(half); ll v1 = sum(t); ll v2 = sum(s); if (lank == 1) { if (s + 1 >= t) return t; else if (v - v2 > 0) { return lankSearch(lank, s, half); } else return lankSearch(lank, half, t); } if ((v - v2) < lank) { return lankSearch(lank - (v - v2), half, t); } if ((v - v2) >= lank) { return lankSearch(lank, s, half); } return -1; } }; class BIT2 { static const int MAX_N = 1000010; public: BIT2() { memset(bit, 0, sizeof(bit)); } ll bit[MAX_N + 1], n; ll gmax(int i) { ll s = 0; while (i > 0) { s = max(bit[i], s); i -= i & -i; } return s; } void add(int i, ll x) { while (i <= n) { bit[i] = max(bit[i], x); i += i & -i; } } void clear() { memset(bit, 0, sizeof(bit)); } }; vector<ll> getp(ll n) { vector<ll> res; ll a = 2; if (n % 2 == 0) { res.push_back(2); while (n % 2 == 0)n /= 2; } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { res.push_back(i); while (n % i == 0)n /= i; } } if (n != 1) res.push_back(n); return res; } vector<ll> getp2(ll n) { vector<ll> res; ll a = 2; if (n % 2 == 0) { while (n % 2 == 0) { n /= 2; res.push_back(2); } } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { while (n % i == 0) { n /= i; res.push_back(i); } } } if (n != 1) res.push_back(n); return res; } vector<pll> getp3(ll n) { vector<pll> res; ll a = 2; int cnt = 0; if (n % 2 == 0) { res.push_back(make_pair(2, 0)); while (n % 2 == 0) { n /= 2; res[cnt].second++; } cnt++; } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { res.push_back(make_pair(n, 0)); while (n % i == 0) { n /= i; res[cnt].second++; } cnt++; } } if (n != 1) res.push_back(make_pair(n, 1)); return res; } vector<ll> getDivisors(ll n) { vector<ll> res; ll a = 2; res.push_back(1); for (ll i = 2; i * i <= n; i++) { if (n % i == 0) { res.push_back(i); if (n / i != i) res.push_back(n / i); } } return res; } struct ve { public: vector<ve> child; int _t = INF; ve(int t) :_t(t) {} ve(ve _left, ve _right) { _t = _left._t + _right._t; child.push_back(_left); child.push_back(_right); } bool operator<(const ve& t) const { return _t > t._t; } }; vector<bool> elas(ll n) { vector<bool> r(n); for (ll i = 3; i < n; i += 2) { r[i] = 1; } r[0] = 0; r[1] = 0; r[2] = 1; for (ll i = 3; i * i < n; i += 2) { if (!r[i]) continue; ll ti = i * 2; while (ti < n) { r[ti] = false; ti += i; } } return r; } bool isprime(ll v) { for (ll i = 2; i * i <= v; i++) { if (v % i == 0) return false; } return true; } ll lcm(vector<ll> v) { if (v.size() == 0) return 0; ll t = v[0]; for (size_t i = 1; i < v.size(); i++) { t = v[i] * t / gcd(v[i], t); } return t; } ll eulerphi(ll n) { auto p = getp(n); double u = n; for (auto v : p) { u *= (double)(v - 1) / (double)v; } return u; } double revs(double x) { ll dig = 0; stringstream st; st << std::fixed << setprecision(0) << x; string v = st.str(); reverse(v.begin(), v.end()); return stod(v); } bool chkparindrome(double x) { stringstream st; st << std::fixed << setprecision(0) << x; string p = st.str(); for (size_t i = 0; i < p.size() / 2; i++) { if (p[i] != p[p.size() - i - 1]) { return false; } } return true; } ll digitC(double x) { stringstream st; st << fixed << setprecision(0) << x; return st.str().size(); } ll digitSum(double x) { stringstream st; st << std::fixed << x; string p = st.str(); ll rs = 0; for (size_t i = 0; i < p.size(); i++) { if (p[i] == '.') break; rs += p[i] - '0'; } return rs; } pdd recs(int x) { if (x == 0) return make_pair(1, 2); pdd d = recs(x - 1); auto nu = d.second * 2.0 + d.first; auto de = d.second; return make_pair(de, nu); } ll caldig(ll a) { ll r = 0; while (a > 0) { a /= 10; r++; } return r; } int chav(char v) { if (v <= 'Z') return v - 'A'; return v - 'a' + 26; } char itoch(int i) { if (i < 26) return i + 'A'; return (i - 26) + 'a'; } int crmp[1000][1000]; int countR(ll base, ll x, ll y, int deep) { if (~crmp[x][y]) { return deep - crmp[x][y]; } crmp[x][y] = deep; double nu = sqrt(base) + x; double de = (base - (x * x)) / y; ll u = nu / de; ll nx = x - (u * de); return countR(base, -nx, de, deep + 1); } bool isPermutation(ll x, ll y) { int c1[10]; int c2[10]; memset(c1, 0, sizeof(c1)); memset(c2, 0, sizeof(c2)); while (x > 0) { c1[x % 10]++; x /= 10; } while (y > 0) { c2[y % 10]++; y /= 10; } for (size_t i = 0; i < 10; i++) { if (c1[i] != c2[i]) return false; } return true; } double heron(ll a, ll b, ll c) { double s = (double)(a + b + c) / 2.0; return sqrt(s * (s - a) * (s - b) * (s - c)); } double calcThreePS(double x1, double y1, double x2, double y2, double x3, double y3) { return abs((x1 * y2 + x2 * y3 + x3 * y1 - y1 * x2 - y2 * x3 - y3 * x1) / 2.0); } typedef vector<vl> mat; class Matrix1 { public: static const int M = INF; int n; mat mul(mat& A, mat& B) { mat C(A.size(), vl(B[0].size())); for (size_t i = 0; i < A.size(); i++) { for (size_t k = 0; k < B.size(); k++) { for (size_t j = 0; j < B[0].size(); j++) { C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % M; } } } return C; } mat pow(mat A, ll n) { mat B(A.size(), vl(A.size())); for (size_t i = 0; i < A.size(); i++) { B[i][i] = 1; } while (n > 0) { if (n & 1) B = mul(B, A); A = mul(A, A); n >>= 1; } return B; } }; ll m; ll stringDivRm(string s, ll k) { ll v = 0; for (size_t i = 0; i < s.size(); i++) { v *= 10; v += s[i] - '0'; v %= k; } return v; } ll repPow(ll b, ll x,ll md) { ll res = 1; ll v = b; while (x > 0) { if (x & 1) { res *= v; res %= md; } v *= v; v %= md; x >>= 1; } return res; } ll repPow(ll b, ll x) { return repPow(b, x, INF); } ll uar[1000010]; ll upr(ll u, ll r) { return (fac[u] * finv[u-r]) % INF; } void solv() { cin >> n; vector<string> tb; for (size_t i = 0; i < n; i++) { string t; cin >> t; tb.push_back(t); } string gd = "good"; string pb = "problem"; for (size_t i = 0; i < n; i++) { string s = tb[i]; vector<int> gp; int pc = 0; for (size_t j = 0; j < s.size() - 10; j++) { int c = 0; for (int k = 0; k < 4; k++) { if (s[j + k] != gd[k])c++; } if (gp.size() > 0) { gp.push_back(min(gp[j - 1], c + pc)); } else { gp.push_back(c); } if (j >= 6) { bool pr = true; for (int k = j - 6; k <= j && pr; k++) { if (s[k] != pb[k - (j - 6)]) pr = false; } if (pr)pc++; } } vector<int> pp; for (int j = s.size() - 7; j >= 4; j--) { int c = 0; for (int k = 0; k < pb.size(); k++) { if (s[j + k] != pb[k])c++; } if (pp.size() > 0) { pp.push_back(min(pp[abs(j - (int)(s.size() - 7)) - 1], c)); } else { pp.push_back(c); } } sort(pp.begin(), pp.end()); int res = INF; for (size_t j = 4; j <= s.size() - 7; j++) { res = min(res,gp[j - 4]+ pp[j - 4]); } cout << res << endl; } } int main() { //COMinit(); solv(); return 0; }