結果
| 問題 |
No.577 Prime Powerful Numbers
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-03-06 01:09:09 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,365 ms / 2,000 ms |
| コード長 | 6,113 bytes |
| コンパイル時間 | 1,275 ms |
| コンパイル使用メモリ | 109,100 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-15 19:16:01 |
| 合計ジャッジ時間 | 5,769 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
ソースコード
#include <limits>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 1000000007;
using ll = long long;
using u32 = unsigned;
using u64 = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
#include <random>
using u128 = __uint128_t;
struct mod64 {
u64 n;
static u64 mod, inv, r2;
mod64() : n(0) {}
mod64(u64 x) : n(init(x)) {}
static u64 init(u64 w) { return reduce(u128(w) * r2); }
static void set_mod(u64 m) {
mod = inv = m;
for (int i = 0; i < 5; ++i) inv *= 2 - inv * m;
r2 = -u128(m) % m;
}
static u64 reduce(u128 x) {
u64 y = u64(x >> 64) - u64((u128(u64(x) * inv) * mod) >> 64);
return ll(y) < 0 ? y + mod : y;
};
mod64& operator+=(mod64 x) { n += x.n - mod; if(ll(n) < 0) n += mod; return *this; }
mod64 operator+(mod64 x) const { return mod64(*this) += x; }
mod64& operator*=(mod64 x) { n = reduce(u128(n) * x.n); return *this; }
mod64 operator*(mod64 x) const { return mod64(*this) *= x; }
u64 val() const { return reduce(n); }
};
u64 mod64::mod, mod64::inv, mod64::r2;
bool suspect(u64 a, u64 s, u64 d, u64 n){
mod64::set_mod(n);
mod64 x(1), xx(a), one(x), minusone(n-1);
while(d > 0){
if(d&1) x = x * xx;
xx = xx * xx;
d >>= 1;
}
if (x.n == one.n) return true;
for (int r = 0; r < s; ++r) {
if(x.n == minusone.n) return true;
x = x * x;
}
return false;
}
template<class T>
bool miller_rabin(T n){
if (n <= 1 || (n > 2 && n % 2 == 0)) return false;
u64 d = n - 1, s = 0;
while (!(d&1)) {++s; d >>= 1;}
static const u64 v[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
static const u64 v_small[] = {2, 7, 61};
if(n <= 4759123141LL){
for (auto &&p : v_small) {
if(p >= n) break;
if(!suspect(p, s, d, n)) return false;
}
}else {
for (auto &&p : v) {
if(p >= n) break;
if(!suspect(p, s, d, n)) return false;
}
}
return true;
}
template<typename T>
struct ExactDiv {
T t, i, val;
ExactDiv() {}
ExactDiv(T n) : t(T(-1) / n), i(mul_inv(n)) , val(n) {};
T mul_inv(T n) {
T x = n;
for (int i = 0; i < 5; ++i) x *= 2 - n * x;
return x;
}
bool divide(T n) const {
if(val == 2) return !(n & 1);
return n * this->i <= this->t;
}
};
vector<ExactDiv<u64>> get_prime(int n){
if(n <= 1) return vector<ExactDiv<u64>>();
vector<bool> is_prime(n+1, true);
vector<ExactDiv<u64>> prime;
is_prime[0] = is_prime[1] = false;
for (int i = 2; i <= n; ++i) {
if(is_prime[i]) prime.emplace_back(i);
for (auto &&j : prime){
if(i*j.val > n) break;
is_prime[i*j.val] = false;
if(j.divide(i)) break;
}
}
return prime;
}
const auto primes = get_prime(32000);
random_device rng;
template<class T>
T pollard_rho2(T n) {
uniform_int_distribution<T> ra(1, n-1);
mod64::set_mod(n);
while(true){
u64 c_ = ra(rng), g = 1, r = 1, m = 500;
while(c_ == n-2) c_ = ra(rng);
mod64 y(ra(rng)), xx(0), c(c_), ys(0), q(1);
while(g == 1){
xx.n = y.n;
for (int i = 1; i <= r; ++i) {
y *= y; y += c;
}
T k = 0; g = 1;
while(k < r && g == 1){
for (int i = 1; i <= (m > (r-k) ? (r-k) : m); ++i) {
ys.n = y.n;
y *= y; y += c;
u64 xxx = xx.val(), yyy = y.val();
q *= mod64(xxx > yyy ? xxx - yyy : yyy - xxx);
}
g = __gcd<ll>(q.val(), n);
k += m;
}
r *= 2;
}
if(g == n) g = 1;
while (g == 1){
ys *= ys; ys += c;
u64 xxx = xx.val(), yyy = ys.val();
g = __gcd<ll>(xxx > yyy ? xxx - yyy : yyy - xxx, n);
}
if (g != n && miller_rabin(g)) return g;
}
}
template<class T>
vector<T> prime_factor(T n, int d = 0){
vector<T> a, res;
if(!d) for (auto &&i : primes) {
while (i.divide(n)){
res.emplace_back(i.val);
n /= i.val;
}
}
while(n != 1){
if(miller_rabin(n)){
a.emplace_back(n);
break;
}
T x = pollard_rho2(n);
n /= x;
a.emplace_back(x);
}
for (auto &&i : a) {
if (miller_rabin(i)) {
res.emplace_back(i);
} else {
vector<T> b = prime_factor(i, d + 1);
for (auto &&j : b) res.emplace_back(j);
}
}
sort(res.begin(),res.end());
return res;
}
void solve(){
}
int main() {
int q;
cin >> q;
auto f = [&](ll x){
if(x == 2) return false;
if(x%2 == 0) return true;
for (ll p = 2; p+2 <= x; p *= 2) {
if(miller_rabin(x-p)) return true;
ll ok = 0, ng = 1000000001; // p^2
while(ng-ok > 1){
ll mid = (ok+ng)/2;
if(mid*mid <= x-p) ok = mid;
else ng = mid;
}
if(ok*ok == x-p && miller_rabin(ok)) return true;
ok = 0, ng = 1000001;
while(ng-ok > 1){
ll mid = (ok+ng)/2;
if(mid*mid*mid <= x-p) ok = mid;
else ng = mid;
}
if(ok*ok*ok == x-p && miller_rabin(ok)) return true;
for (auto &&i : primes) {
u64 pp = i.val*i.val*i.val;
for (int j = 4; j*log10(i.val) < 18.5; ++j) {
pp *= i.val;
if(pp == x-p) return true;
}
}
}
return false;
};
while(q--){
ll x;
cin >> x;
puts(f(x) ? "Yes" : "No");
}
return 0;
}