結果
問題 | No.1003 サイコロの実装 (1) |
ユーザー | Example |
提出日時 | 2020-03-08 14:22:02 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,458 bytes |
コンパイル時間 | 1,474 ms |
コンパイル使用メモリ | 131,408 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-07 03:07:22 |
合計ジャッジ時間 | 2,488 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 2 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
ソースコード
#include <iostream> #include <cstdio> #include <string> #include <vector> #include <algorithm> #include <functional> #include <iomanip> #include <stdlib.h> #include <string.h> #include <cstring> #include <cmath> #include <map> #include <queue> #include <deque> #include <stack> #include <set> #include <stdio.h> #include <tuple> #include <bitset> #include <cfloat> #include <fstream> #include <limits.h> #include <list> #include <math.h> #include <random> #include <unordered_map> #include <unordered_set> #include <bitset> #include <numeric> #include <utility> #include <sstream> #include <cassert> template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } using namespace std; #define int long long #define ll long long #define rep(i, n) for (ll i = 0; i < (n); i++) #define P pair<ll, ll> #define sz(x) (ll)x.size() #define ALL(x) (x).begin(),(x).end() #define ALLR(x) (x).rbegin(),(x).rend() #define VE vector<ll> #define COUT(x) cout<<(x)<<endl #define MA map<ll,ll> #define SE set<ll> #define PQ priority_queue<ll> #define PQR priority_queue<ll,VE,greater<ll>> #define COUT(x) cout<<(x)<<endl #define YES(n) cout << ((n) ? "YES" : "NO" ) << endl #define Yes(n) cout << ((n) ? "Yes" : "No" ) << endl #define EPS (1e-10) #define pb push_back const long long MOD = 1000000007; //const long long MOD = 998244353; const long long INF = 1LL << 60; const double PI = acos(-1.0); using Graph = vector<VE>; struct mint { ll x; // typedef long long ll; mint(ll x = 0) :x((x%MOD + MOD) % MOD) {} mint operator-() const { return mint(-x); } mint& operator+=(const mint a) { if ((x += a.x) >= MOD) x -= MOD; return *this; } mint& operator-=(const mint a) { if ((x += MOD - a.x) >= MOD) x -= MOD; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= MOD; return *this; } mint operator+(const mint a) const { mint res(*this); return res += a; } mint operator-(const mint a) const { mint res(*this); return res -= a; } mint operator*(const mint a) const { mint res(*this); return res *= a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } // for prime MOD mint inv() const { return pow(MOD - 2); } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator/(const mint a) const { mint res(*this); return res /= a; } }; struct combination { vector<mint> fact, ifact; combination(int n) :fact(n + 1), ifact(n + 1) { //assert(n < MOD); fact[0] = 1; for (int i = 1; i <= n; ++i) fact[i] = fact[i - 1] * i; ifact[n] = fact[n].inv(); for (int i = n; i >= 1; --i) ifact[i - 1] = ifact[i] * i; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fact[n] * ifact[k] * ifact[n - k]; } }com(10); struct edge { ll to, cost; }; struct Sieve { int n; vector<int> f, primes; // n以下の素数を列挙する Sieve(int n = 1) :n(n), f(n + 1) { f[0] = f[1] = -1; for (ll i = 2; i <= n; ++i) { if (f[i]) continue; primes.push_back(i); f[i] = i; for (ll j = i * i; j <= n; j += i) { if (!f[j]) f[j] = i; } } } // xが素数かどうか判定する bool isPrime(int x) { return f[x] == x; } // 素因数を全列挙 vector<int> factorList(int x) { vector<int> res; while (x != 1) { res.push_back(f[x]); x /= f[x]; } return res; } // ランレングス圧縮 vector<P> factor(int x) { vector<int> fl = factorList(x); if (fl.size() == 0) return {}; vector<P> res(1, P(fl[0], 0)); for (int p : fl) { if (res.back().first == p) { res.back().second++; } else { res.emplace_back(p, 1); } } return res; } }; class UnionFind { public: vector <ll> par; // 各元の親を表す配列 vector <ll> siz; // 素集合のサイズを表す配列(1 で初期化) // Constructor UnionFind(ll sz_) : par(sz_), siz(sz_, 1) { for (ll i = 0; i < sz_; ++i) par[i] = i; // 初期では親は自分自身 } void init(ll sz_) { par.resize(sz_); siz.resize(sz_, 1); for (ll i = 0; i < sz_; ++i) par[i] = i; // 初期では親は自分自身 } // Member Function // Find ll root(ll x) { // 根の検索 while (par[x] != x) { x = par[x] = par[par[x]]; // x の親の親を x の親とする } return x; } // Union(Unite, Merge) bool merge(ll x, ll y) { x = root(x); y = root(y); if (x == y) return false; // merge technique(データ構造をマージするテク.小を大にくっつける) if (siz[x] < siz[y]) swap(x, y); siz[x] += siz[y]; par[y] = x; return true; } bool issame(ll x, ll y) { // 連結判定 return root(x) == root(y); } ll size(ll x) { // 素集合のサイズ return siz[root(x)]; } }; ll gcd(ll a, ll b) { if (a < b)swap(a, b); if (b == 0) return a; unsigned r; while ((r = a % b)) { a = b; b = r; } return b; } ll lcm(ll a, ll b) { ll g = gcd(a, b); return a * b / g; } bool prime(ll n) { for (ll i = 2; i <= sqrt(n); i++) { if (n%i == 0)return false; } return n != 1; } map<ll, ll> prime_factor(ll n) { map<ll, ll> ret; for (ll i = 2; i * i <= n; i++) { while (n % i == 0) { ret[i]++; n /= i; } } if (n != 1) ret[n] = 1; return ret; } ll modinv(ll a, ll m) { ll b = m, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= m; if (u < 0) u += m; return u; } vector<pair<char, int>> RunLength(string s) { if (s.size() == 0)return {}; vector<pair<char, int>>res(1, pair<char, int>(s[0], 0)); for (char p : s) { if (res.back().first == p) { res.back().second++; } else { res.emplace_back(p, 1); } } return res; } // Digit Count int GetDigit(int num) { return log10(num) + 1; } // bit calculation[how many "1"] (= __builtin_popcount()) int bit_count(int n) { int cnt = 0; while (n > 0) { if (n % 2 == 1)cnt++; n /= 2; } return cnt; } mint POW(mint n, int p) { if (p == 0)return 1; if (p % 2 == 0) { mint t = POW(n, p / 2); return t * t; } return n * POW(n, p - 1); } #define ld long double const int dx[4] = { 1,0,-1,0 }; const int dy[4] = { 0,1,0,-1 }; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); //cout << fixed << setprecision(15); int n; cin >> n; if (n % 6 == 0)cout << "Yes" << endl; else cout << "No" << endl; return 0; }