結果

問題 No.391 CODING WAR
ユーザー taq225
提出日時 2020-03-09 00:42:21
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 827 ms / 2,000 ms
コード長 2,297 bytes
コンパイル時間 98 ms
コンパイル使用メモリ 12,800 KB
実行使用メモリ 49,920 KB
最終ジャッジ日時 2024-11-07 20:21:21
合計ジャッジ時間 7,320 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 16
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

from collections import defaultdict
class Combinatorics:
def __init__(self, N, mod):
'''
Preprocess for calculating binomial coefficients nCr (0 <= r <= n, 0 <= n <= N)
over the finite field Z/(mod)Z.
Input:
N (int): maximum n
mod (int): a prime number. The order of the field Z/(mod)Z over which nCr is calculated.
'''
self.mod = mod
self.fact = {i: None for i in range(N+1)} # n!
self.inverse = {i: None for i in range(1, N+1)} # inverse of n in the field Z/(MOD)Z
self.fact_inverse = {i: None for i in range(N+1)} # inverse of n! in the field Z/(MOD)Z
# preprocess
self.fact[0] = self.fact[1] = 1
self.fact_inverse[0] = self.fact_inverse[1] = 1
self.inverse[1] = 1
for i in range(2, N+1):
self.fact[i] = i * self.fact[i-1] % self.mod
q, r = divmod(self.mod, i)
self.inverse[i] = (- (q % self.mod) * self.inverse[r]) % self.mod
self.fact_inverse[i] = self.inverse[i] * self.fact_inverse[i-1] % self.mod
def perm(self, n, r):
'''
Calculate nPr = n! / (n-r)! % mod
'''
if n < r or n < 0 or r < 0:
return 0
else:
return (self.fact[n] * self.fact_inverse[n-r]) % self.mod
def binom(self, n, r):
'''
Calculate nCr = n! /(r! (n-r)!) % mod
'''
if n < r or n < 0 or r < 0:
return 0
else:
return self.fact[n] * (self.fact_inverse[r] * self.fact_inverse[n-r] % self.mod) % self.mod
def hom(self, n, r):
'''
Calculate nHr = {n+r-1}Cr % mod.
Assign r objects to one of n classes.
Arrangement of r circles and n-1 partitions:
o o o | o o | | | o | | | o o | | o
'''
if n == 0 and r > 0:
return 0
if n >= 0 and r == 0:
return 1
return self.binom(n + r - 1, r)
N, M = map(int, input().split())
MOD = 10**9 + 7
com = Combinatorics(M, MOD)
ans = 0
for i in range(M):
if i % 2 == 0:
ans = (ans + com.binom(M, i) * pow(M - i, N, MOD)) % MOD
else:
ans = (ans - com.binom(M, i) * pow(M - i, N, MOD)) % MOD
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0