結果
| 問題 |
No.391 CODING WAR
|
| コンテスト | |
| ユーザー |
taq225
|
| 提出日時 | 2020-03-09 00:46:57 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 698 ms / 2,000 ms |
| コード長 | 2,177 bytes |
| コンパイル時間 | 128 ms |
| コンパイル使用メモリ | 12,672 KB |
| 実行使用メモリ | 22,628 KB |
| 最終ジャッジ日時 | 2024-11-07 20:21:35 |
| 合計ジャッジ時間 | 6,273 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 16 |
ソースコード
from collections import defaultdict
class Combinatorics:
def __init__(self, N, mod):
'''
Preprocess for calculating binomial coefficients nCr (0 <= r <= n, 0 <= n <= N)
over the finite field Z/(mod)Z.
Input:
N (int): maximum n
mod (int): a prime number. The order of the field Z/(mod)Z over which nCr is calculated.
'''
self.mod = mod
self.fact = [0] * (N+1) # n!
self.inverse = [None] + [0] * N # inverse of n in the field Z/(MOD)Z
self.fact_inverse = [0] * (N+1) # inverse of n! in the field Z/(MOD)Z
# preprocess
self.fact[0] = self.fact[1] = 1
self.fact_inverse[0] = self.fact_inverse[1] = 1
self.inverse[1] = 1
for i in range(2, N+1):
self.fact[i] = i * self.fact[i-1] % self.mod
q, r = divmod(self.mod, i)
self.inverse[i] = (- (q % self.mod) * self.inverse[r]) % self.mod
self.fact_inverse[i] = self.inverse[i] * self.fact_inverse[i-1] % self.mod
def perm(self, n, r):
'''
Calculate nPr = n! / (n-r)! % mod
'''
if n < r or n < 0 or r < 0: return 0
else: return (self.fact[n] * self.fact_inverse[n-r]) % self.mod
def binom(self, n, r):
'''
Calculate nCr = n! /(r! (n-r)!) % mod
'''
if n < r or n < 0 or r < 0: return 0
else: return self.fact[n] * (self.fact_inverse[r] * self.fact_inverse[n-r] % self.mod) % self.mod
def hom(self, n, r):
'''
Calculate nHr = {n+r-1}Cr % mod.
Assign r objects to one of n classes.
Arrangement of r circles and n-1 partitions:
o o o | o o | | | o | | | o o | | o
'''
if n == 0 and r > 0: return 0
if n >= 0 and r == 0: return 1
return self.binom(n + r - 1, r)
N, M = map(int, input().split())
MOD = 10**9 + 7
com = Combinatorics(M, MOD)
ans = 0
for i in range(M):
if i % 2 == 0:
ans = (ans + com.binom(M, i) * pow(M - i, N, MOD)) % MOD
else:
ans = (ans - com.binom(M, i) * pow(M - i, N, MOD)) % MOD
print(ans)
taq225