結果

問題 No.496 ワープクリスタル (給料日前編)
ユーザー hamrayhamray
提出日時 2020-03-09 03:13:22
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 10 ms / 2,000 ms
コード長 8,703 bytes
コンパイル時間 1,529 ms
コンパイル使用メモリ 173,784 KB
実行使用メモリ 22,400 KB
最終ジャッジ日時 2024-11-07 20:30:28
合計ジャッジ時間 2,630 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 9 ms
22,400 KB
testcase_01 AC 9 ms
22,272 KB
testcase_02 AC 9 ms
22,144 KB
testcase_03 AC 8 ms
22,400 KB
testcase_04 AC 9 ms
22,144 KB
testcase_05 AC 9 ms
22,272 KB
testcase_06 AC 9 ms
22,272 KB
testcase_07 AC 8 ms
22,392 KB
testcase_08 AC 9 ms
22,272 KB
testcase_09 AC 10 ms
22,144 KB
testcase_10 AC 9 ms
22,272 KB
testcase_11 AC 9 ms
22,272 KB
testcase_12 AC 9 ms
22,400 KB
testcase_13 AC 9 ms
22,272 KB
testcase_14 AC 10 ms
22,400 KB
testcase_15 AC 10 ms
22,272 KB
testcase_16 AC 9 ms
22,400 KB
testcase_17 AC 9 ms
22,400 KB
testcase_18 AC 9 ms
22,272 KB
testcase_19 AC 9 ms
22,272 KB
testcase_20 AC 9 ms
22,272 KB
testcase_21 AC 9 ms
22,400 KB
testcase_22 AC 10 ms
22,400 KB
testcase_23 AC 10 ms
22,272 KB
testcase_24 AC 10 ms
22,272 KB
testcase_25 AC 10 ms
22,272 KB
testcase_26 AC 10 ms
22,400 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
 
#define M_PI       3.14159265358979323846
 
using namespace std;
 
 
//typedef
//-------------------------#include <bits/stdc++.h>
 
#define M_PI       3.14159265358979323846
 
using namespace std;
 
//conversion
//------------------------------------------
inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; }
template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); }
inline int readInt() { int x; scanf("%d", &x); return x; }
 
//typedef
//------------------------------------------
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<string> VS;
typedef pair<int, int> PII;
typedef pair<int, PII> TIII;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector<LL> VLL;
typedef vector<VLL> VVLL;
 
 
//container util
 
//------------------------------------------
#define ALL(a)  (a).begin(),(a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define PB push_back
#define MP make_pair
#define SZ(a) int((a).size())
#define SQ(a) ((a)*(a))
#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)
#define EXIST(s,e) ((s).find(e)!=(s).end())
#define SORT(c) sort((c).begin(),(c).end())
 
//repetition
//------------------------------------------
#define FOR(i,s,n) for(int i=s;i<(int)n;++i)
#define REP(i,n) FOR(i,0,n)
#define MOD 1000000007
 
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
 
 
 
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
const double EPS = 1E-8;
 
#define chmin(x,y) x=min(x,y)
#define chmax(x,y) x=max(x,y)
const int INF = 100000000;
 
struct Edge {
    int to, from;
    ll cost;
    Edge(int from, int to, ll cost): from(from), to(to), cost(cost) {}
};
 
class UnionFind {
public:
    vector <ll> par; 
    vector <ll> siz; 
    
    vector <ll> maxv;
    UnionFind(ll sz_): par(sz_), siz(sz_, 1LL) {
        for (ll i = 0; i < sz_; ++i) par[i] = i;
    }
    void init(ll sz_) {
        par.resize(sz_);
        siz.assign(sz_, 1LL);
        for (ll i = 0; i < sz_; ++i) par[i] = i;
    }
 
    ll root(ll x) { 
        while (par[x] != x) {
            x = par[x] = par[par[x]];
        }
        return x;
    }
 
    bool merge(ll x, ll y) {
        x = root(x);
        y = root(y);
        if (x == y) return false;
        if (siz[x] < siz[y]) swap(x, y);
        siz[x] += siz[y];
        par[y] = x;
        return true;
    }
 
    bool issame(ll x, ll y) { 
        return root(x) == root(y);
    }
 
    ll size(ll x) { 
        return siz[root(x)];
    }
};
 
typedef vector<vector<Edge>> AdjList;
AdjList graph;
 
ll mod_pow(ll x, ll n, ll mod){
    ll res = 1;
    while(n){
        if(n&1) res = res * x;
 
        if(res > mod){
            res %= mod;
        }
        x = x * x %mod;
        n >>= 1;
    }
    return res;
}
 
#define SIEVE_SIZE 5000000+10
bool sieve[SIEVE_SIZE];
void make_sieve(){
    for(int i=0; i<SIEVE_SIZE; ++i) sieve[i] = true;
    sieve[0] = sieve[1] = false;
    for(int i=2; i*i<SIEVE_SIZE; ++i) if(sieve[i]) for(int j=2; i*j<SIEVE_SIZE; ++j) sieve[i*j] = false;
}
 
bool isprime(ll n){
    if(n == 0 || n == 1) return false;
    for(ll i=2; i*i<=n; ++i) if(n%i==0) return false;
    return true;
}
 
template<typename T>
vector<T> gauss_jordan(const vector<vector<T>>& A, const vector<T>& b){
    int n = A.size();
    vector<vector<T>> B(n, vector<T>(n+1));
 
    for(int i=0; i<n; ++i){
        for(int j=0; j<n; ++j){
            B[i][j] = A[i][j];
        }
    }
 
    for(int i=0; i<n; ++i) B[i][n] = b[i];
 
    for(int i=0; i<n; ++i){
        int pivot = i;
        for(int j=i; j<n; ++j){
            if(abs(B[j][i]) > abs(B[pivot][i])) pivot = j;
        }
        swap(B[i], B[pivot]);
 
        if(abs(B[i][i]) < EPS) return vector<T>(); //解なし
 
        for(int j=i+1; j<=n; ++j) B[i][j] /= B[i][i];
        for(int j=0; j<n; ++j){
            if(i != j){
                for(int k=i+1; k<=n; ++k) B[j][k] -= B[i][j] * B[i][k];
            }
        }
    }
 
    vector<T> x(n);
 
    for(int i=0; i<n; ++i) x[i] = B[i][n];
    return x;
    
}
 
 
 
 
typedef vector<ll> vec;
typedef vector<vec> mat;
 
mat mul(mat &A, mat &B) {
    mat C(A.size(), vec((int)B[0].size()));
    for(int i=0; i<A.size(); ++i){
        for(int k=0; k<B.size(); ++k){
            for(int j=0; j<B[0].size(); ++j){
                C[i][j] = (C[i][j] + A[i][k] * B[k][j] %MOD) % MOD;
            }
        }
    }
    return C;
}
mat mat_pow(mat A, ll n) {
    mat B(A.size(), vec((int)A.size()));
 
    for(int i=0; i<A.size(); ++i){
        B[i][i] = 1;
    }
 
    while(n > 0) {
        if(n & 1) B = mul(B, A);
        A = mul(A, A);
        n >>= 1;
    }
    return B;
}
 
bool operator<(const pii& a, const pii& b){
    if(a.first == b.first) return a.second < b.second;
    return a.first < b.first;
}
 
const int MAX = 510000;
long long fac[MAX], finv[MAX], inv[MAX];
 
// テーブルを作る前処理
void COMinit() {
    fac[0] = fac[1] = 1;
    finv[0] = finv[1] = 1;
    inv[1] = 1;
    for (int i = 2; i < MAX; i++){
        fac[i] = fac[i - 1] * i % MOD;
        inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
        finv[i] = finv[i - 1] * inv[i] % MOD;
    }
}
 
// 二項係数計算
long long COM(int n, int k){
    if (n < k) return 0;
    if (n < 0 || k < 0) return 0;
    return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
 
int bit[1000010];
int sums(int i){
    i++;
    int s = 0;
    while(i > 0){
        s += bit[i];
        i -= i & -i;
    }
    return s;
}
void add(int i, int x){
    i++;
    while(i <= 1000010){
        bit[i] += x;
        i += i & -i;
    }
}

ll GCD(ll a, ll b){
    
    if(b == 0) return a;
    return GCD(b, a%b);
}
 
struct BipartiteMatching {
  vector< vector< int > > graph;
  vector< int > match, alive, used;
  int timestamp;
 
  BipartiteMatching(int n) : graph(n), alive(n, 1), used(n, 0), match(n, -1), timestamp(0) {}
 
  void add_edge(int u, int v) {
    graph[u].push_back(v);
    graph[v].push_back(u);
  }
 
  bool dfs(int idx) {
    used[idx] = timestamp;
    for(auto &to : graph[idx]) {
      int to_match = match[to];
      if(alive[to] == 0) continue;
      if(to_match == -1 || (used[to_match] != timestamp && dfs(to_match))) {
        match[idx] = to;
        match[to] = idx;
        return true;
      }
    }
    return false;
  }
 
  int bipartite_matching() {
    int ret = 0;
    for(int i = 0; i < graph.size(); i++) {
      if(alive[i] == 0) continue;
      if(match[i] == -1) {
        ++timestamp;
        ret += dfs(i);
      }
    }
    return ret;
  }
 
  void output() {
    for(int i = 0; i < graph.size(); i++) {
      if(i < match[i]) {
        cout << i << "-" << match[i] << endl;
      }
    }
  }
};
long long extGCD(long long a, long long b, long long &x, long long &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a%b, y, x);
    y -= a/b * x;
    return d;
}
// 負の数にも対応した mod (a = -11 とかでも OK) 
inline long long mod(long long a, long long m) {
    return (a % m + m) % m;
}
 
// 逆元計算 (ここでは a と m が互いに素であることが必要)
long long modinv(long long a, long long m) {
    long long x, y;
    extGCD(a, m, x, y);
    return mod(x, m); // 気持ち的には x % m だが、x が負かもしれないので
}

ll dp[55][210][210];
int main() {
    cin.tie(0);
    ios::sync_with_stdio(false);
    //cout << fixed << setprecision(15);

    int Gx, Gy, N, F; cin >> Gx >> Gy >> N >> F;

    vector<ll> X, Y, C;
    REP(i,N){
        int x, y, c; cin >> x >> y >> c;
        X.push_back(x);
        Y.push_back(y);
        C.push_back(c);
        
    }
    //各座標に辿りつくための最小コストを考える
    for(int i=0; i<55; i++){
        for(int j=0; j<210; j++){
            for(int k=0; k<210; k++){
                dp[i][j][k] = INT_MAX;
            }
        }
    }

    dp[0][0][0] = 0;
    for(int i=0; i<N; i++){

        ll x = X[i], y = Y[i], c = C[i];
        for(int j=0; j<=Gx; j++){
            
            for(int k=0; k<=Gy; k++){
                if(j-x>=0 && k-y>=0){
                    dp[i+1][j][k] = min(dp[i+1][j][k], dp[i][j-x][k-y]+c);
                }
                dp[i+1][j][k] = min(dp[i+1][j][k], dp[i][j][k]);
            }
        }
    }

    ll ans = (Gx+Gy)*F;
    for(int i=0; i<=Gx; i++){
        for(int j=0; j<=Gy; j++){
            if(dp[N][i][j] == INT_MAX) continue;
            ans = min(ans, dp[N][i][j] + (Gx-i+Gy-j)*F);
        }
    }
    cout << ans << endl;

    return 0;
}
0