結果
問題 | No.496 ワープクリスタル (給料日前編) |
ユーザー | hamray |
提出日時 | 2020-03-09 03:13:22 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 10 ms / 2,000 ms |
コード長 | 8,703 bytes |
コンパイル時間 | 1,529 ms |
コンパイル使用メモリ | 173,784 KB |
実行使用メモリ | 22,400 KB |
最終ジャッジ日時 | 2024-11-07 20:30:28 |
合計ジャッジ時間 | 2,630 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 9 ms
22,400 KB |
testcase_01 | AC | 9 ms
22,272 KB |
testcase_02 | AC | 9 ms
22,144 KB |
testcase_03 | AC | 8 ms
22,400 KB |
testcase_04 | AC | 9 ms
22,144 KB |
testcase_05 | AC | 9 ms
22,272 KB |
testcase_06 | AC | 9 ms
22,272 KB |
testcase_07 | AC | 8 ms
22,392 KB |
testcase_08 | AC | 9 ms
22,272 KB |
testcase_09 | AC | 10 ms
22,144 KB |
testcase_10 | AC | 9 ms
22,272 KB |
testcase_11 | AC | 9 ms
22,272 KB |
testcase_12 | AC | 9 ms
22,400 KB |
testcase_13 | AC | 9 ms
22,272 KB |
testcase_14 | AC | 10 ms
22,400 KB |
testcase_15 | AC | 10 ms
22,272 KB |
testcase_16 | AC | 9 ms
22,400 KB |
testcase_17 | AC | 9 ms
22,400 KB |
testcase_18 | AC | 9 ms
22,272 KB |
testcase_19 | AC | 9 ms
22,272 KB |
testcase_20 | AC | 9 ms
22,272 KB |
testcase_21 | AC | 9 ms
22,400 KB |
testcase_22 | AC | 10 ms
22,400 KB |
testcase_23 | AC | 10 ms
22,272 KB |
testcase_24 | AC | 10 ms
22,272 KB |
testcase_25 | AC | 10 ms
22,272 KB |
testcase_26 | AC | 10 ms
22,400 KB |
ソースコード
#include <bits/stdc++.h> #define M_PI 3.14159265358979323846 using namespace std; //typedef //-------------------------#include <bits/stdc++.h> #define M_PI 3.14159265358979323846 using namespace std; //conversion //------------------------------------------ inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } inline int readInt() { int x; scanf("%d", &x); return x; } //typedef //------------------------------------------ typedef vector<int> VI; typedef vector<VI> VVI; typedef vector<string> VS; typedef pair<int, int> PII; typedef pair<int, PII> TIII; typedef long long LL; typedef unsigned long long ULL; typedef vector<LL> VLL; typedef vector<VLL> VVLL; //container util //------------------------------------------ #define ALL(a) (a).begin(),(a).end() #define RALL(a) (a).rbegin(), (a).rend() #define PB push_back #define MP make_pair #define SZ(a) int((a).size()) #define SQ(a) ((a)*(a)) #define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i) #define EXIST(s,e) ((s).find(e)!=(s).end()) #define SORT(c) sort((c).begin(),(c).end()) //repetition //------------------------------------------ #define FOR(i,s,n) for(int i=s;i<(int)n;++i) #define REP(i,n) FOR(i,0,n) #define MOD 1000000007 #define rep(i, a, b) for(int i = a; i < (b); ++i) #define trav(a, x) for(auto& a : x) #define all(x) x.begin(), x.end() #define sz(x) (int)(x).size() typedef long long ll; typedef pair<int, int> pii; typedef vector<int> vi; const double EPS = 1E-8; #define chmin(x,y) x=min(x,y) #define chmax(x,y) x=max(x,y) const int INF = 100000000; struct Edge { int to, from; ll cost; Edge(int from, int to, ll cost): from(from), to(to), cost(cost) {} }; class UnionFind { public: vector <ll> par; vector <ll> siz; vector <ll> maxv; UnionFind(ll sz_): par(sz_), siz(sz_, 1LL) { for (ll i = 0; i < sz_; ++i) par[i] = i; } void init(ll sz_) { par.resize(sz_); siz.assign(sz_, 1LL); for (ll i = 0; i < sz_; ++i) par[i] = i; } ll root(ll x) { while (par[x] != x) { x = par[x] = par[par[x]]; } return x; } bool merge(ll x, ll y) { x = root(x); y = root(y); if (x == y) return false; if (siz[x] < siz[y]) swap(x, y); siz[x] += siz[y]; par[y] = x; return true; } bool issame(ll x, ll y) { return root(x) == root(y); } ll size(ll x) { return siz[root(x)]; } }; typedef vector<vector<Edge>> AdjList; AdjList graph; ll mod_pow(ll x, ll n, ll mod){ ll res = 1; while(n){ if(n&1) res = res * x; if(res > mod){ res %= mod; } x = x * x %mod; n >>= 1; } return res; } #define SIEVE_SIZE 5000000+10 bool sieve[SIEVE_SIZE]; void make_sieve(){ for(int i=0; i<SIEVE_SIZE; ++i) sieve[i] = true; sieve[0] = sieve[1] = false; for(int i=2; i*i<SIEVE_SIZE; ++i) if(sieve[i]) for(int j=2; i*j<SIEVE_SIZE; ++j) sieve[i*j] = false; } bool isprime(ll n){ if(n == 0 || n == 1) return false; for(ll i=2; i*i<=n; ++i) if(n%i==0) return false; return true; } template<typename T> vector<T> gauss_jordan(const vector<vector<T>>& A, const vector<T>& b){ int n = A.size(); vector<vector<T>> B(n, vector<T>(n+1)); for(int i=0; i<n; ++i){ for(int j=0; j<n; ++j){ B[i][j] = A[i][j]; } } for(int i=0; i<n; ++i) B[i][n] = b[i]; for(int i=0; i<n; ++i){ int pivot = i; for(int j=i; j<n; ++j){ if(abs(B[j][i]) > abs(B[pivot][i])) pivot = j; } swap(B[i], B[pivot]); if(abs(B[i][i]) < EPS) return vector<T>(); //解なし for(int j=i+1; j<=n; ++j) B[i][j] /= B[i][i]; for(int j=0; j<n; ++j){ if(i != j){ for(int k=i+1; k<=n; ++k) B[j][k] -= B[i][j] * B[i][k]; } } } vector<T> x(n); for(int i=0; i<n; ++i) x[i] = B[i][n]; return x; } typedef vector<ll> vec; typedef vector<vec> mat; mat mul(mat &A, mat &B) { mat C(A.size(), vec((int)B[0].size())); for(int i=0; i<A.size(); ++i){ for(int k=0; k<B.size(); ++k){ for(int j=0; j<B[0].size(); ++j){ C[i][j] = (C[i][j] + A[i][k] * B[k][j] %MOD) % MOD; } } } return C; } mat mat_pow(mat A, ll n) { mat B(A.size(), vec((int)A.size())); for(int i=0; i<A.size(); ++i){ B[i][i] = 1; } while(n > 0) { if(n & 1) B = mul(B, A); A = mul(A, A); n >>= 1; } return B; } bool operator<(const pii& a, const pii& b){ if(a.first == b.first) return a.second < b.second; return a.first < b.first; } const int MAX = 510000; long long fac[MAX], finv[MAX], inv[MAX]; // テーブルを作る前処理 void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } int bit[1000010]; int sums(int i){ i++; int s = 0; while(i > 0){ s += bit[i]; i -= i & -i; } return s; } void add(int i, int x){ i++; while(i <= 1000010){ bit[i] += x; i += i & -i; } } ll GCD(ll a, ll b){ if(b == 0) return a; return GCD(b, a%b); } struct BipartiteMatching { vector< vector< int > > graph; vector< int > match, alive, used; int timestamp; BipartiteMatching(int n) : graph(n), alive(n, 1), used(n, 0), match(n, -1), timestamp(0) {} void add_edge(int u, int v) { graph[u].push_back(v); graph[v].push_back(u); } bool dfs(int idx) { used[idx] = timestamp; for(auto &to : graph[idx]) { int to_match = match[to]; if(alive[to] == 0) continue; if(to_match == -1 || (used[to_match] != timestamp && dfs(to_match))) { match[idx] = to; match[to] = idx; return true; } } return false; } int bipartite_matching() { int ret = 0; for(int i = 0; i < graph.size(); i++) { if(alive[i] == 0) continue; if(match[i] == -1) { ++timestamp; ret += dfs(i); } } return ret; } void output() { for(int i = 0; i < graph.size(); i++) { if(i < match[i]) { cout << i << "-" << match[i] << endl; } } } }; long long extGCD(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a%b, y, x); y -= a/b * x; return d; } // 負の数にも対応した mod (a = -11 とかでも OK) inline long long mod(long long a, long long m) { return (a % m + m) % m; } // 逆元計算 (ここでは a と m が互いに素であることが必要) long long modinv(long long a, long long m) { long long x, y; extGCD(a, m, x, y); return mod(x, m); // 気持ち的には x % m だが、x が負かもしれないので } ll dp[55][210][210]; int main() { cin.tie(0); ios::sync_with_stdio(false); //cout << fixed << setprecision(15); int Gx, Gy, N, F; cin >> Gx >> Gy >> N >> F; vector<ll> X, Y, C; REP(i,N){ int x, y, c; cin >> x >> y >> c; X.push_back(x); Y.push_back(y); C.push_back(c); } //各座標に辿りつくための最小コストを考える for(int i=0; i<55; i++){ for(int j=0; j<210; j++){ for(int k=0; k<210; k++){ dp[i][j][k] = INT_MAX; } } } dp[0][0][0] = 0; for(int i=0; i<N; i++){ ll x = X[i], y = Y[i], c = C[i]; for(int j=0; j<=Gx; j++){ for(int k=0; k<=Gy; k++){ if(j-x>=0 && k-y>=0){ dp[i+1][j][k] = min(dp[i+1][j][k], dp[i][j-x][k-y]+c); } dp[i+1][j][k] = min(dp[i+1][j][k], dp[i][j][k]); } } } ll ans = (Gx+Gy)*F; for(int i=0; i<=Gx; i++){ for(int j=0; j<=Gy; j++){ if(dp[N][i][j] == INT_MAX) continue; ans = min(ans, dp[N][i][j] + (Gx-i+Gy-j)*F); } } cout << ans << endl; return 0; }