結果

問題 No.17 2つの地点に泊まりたい
ユーザー hamrayhamray
提出日時 2020-03-10 11:49:47
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 2 ms / 5,000 ms
コード長 8,297 bytes
コンパイル時間 1,637 ms
コンパイル使用メモリ 176,744 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-15 23:10:28
合計ジャッジ時間 2,588 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 1 ms
6,816 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 1 ms
6,816 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 1 ms
6,820 KB
testcase_13 AC 2 ms
6,820 KB
testcase_14 AC 2 ms
6,820 KB
testcase_15 AC 1 ms
6,816 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 2 ms
6,820 KB
testcase_18 AC 2 ms
6,816 KB
testcase_19 AC 2 ms
6,816 KB
testcase_20 AC 2 ms
6,816 KB
testcase_21 AC 2 ms
6,820 KB
testcase_22 AC 2 ms
6,816 KB
testcase_23 AC 2 ms
6,816 KB
testcase_24 AC 2 ms
6,816 KB
testcase_25 AC 1 ms
6,820 KB
testcase_26 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define M_PI 3.14159265358979323846
using namespace std;
//typedef
//-------------------------#include <bits/stdc++.h>
#define M_PI 3.14159265358979323846
using namespace std;
//conversion
//------------------------------------------
inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; }
template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); }
inline int readInt() { int x; scanf("%d", &x); return x; }
//typedef
//------------------------------------------
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<string> VS;
typedef pair<int, int> PII;
typedef pair<int, PII> TIII;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector<LL> VLL;
typedef vector<VLL> VVLL;
//container util
//------------------------------------------
#define ALL(a) (a).begin(),(a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define PB push_back
#define MP make_pair
#define SZ(a) int((a).size())
#define SQ(a) ((a)*(a))
#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)
#define EXIST(s,e) ((s).find(e)!=(s).end())
#define SORT(c) sort((c).begin(),(c).end())
//repetition
//------------------------------------------
#define FOR(i,s,n) for(int i=s;i<(int)n;++i)
#define REP(i,n) FOR(i,0,n)
#define MOD 1000000007
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
const double EPS = 1E-8;
#define chmin(x,y) x=min(x,y)
#define chmax(x,y) x=max(x,y)
const int INF = 100000000;
struct Edge {
int to, from;
ll cost;
Edge(int from, int to, ll cost): from(from), to(to), cost(cost) {}
};
class UnionFind {
public:
vector <ll> par;
vector <ll> siz;
vector <ll> maxv;
UnionFind(ll sz_): par(sz_), siz(sz_, 1LL) {
for (ll i = 0; i < sz_; ++i) par[i] = i;
}
void init(ll sz_) {
par.resize(sz_);
siz.assign(sz_, 1LL);
for (ll i = 0; i < sz_; ++i) par[i] = i;
}
ll root(ll x) {
while (par[x] != x) {
x = par[x] = par[par[x]];
}
return x;
}
bool merge(ll x, ll y) {
x = root(x);
y = root(y);
if (x == y) return false;
if (siz[x] < siz[y]) swap(x, y);
siz[x] += siz[y];
par[y] = x;
return true;
}
bool issame(ll x, ll y) {
return root(x) == root(y);
}
ll size(ll x) {
return siz[root(x)];
}
};
typedef vector<vector<Edge>> AdjList;
AdjList graph;
ll mod_pow(ll x, ll n, ll mod){
ll res = 1;
while(n){
if(n&1) res = res * x;
if(res > mod){
res %= mod;
}
x = x * x %mod;
n >>= 1;
}
return res;
}
#define SIEVE_SIZE 5000000+10
bool sieve[SIEVE_SIZE];
void make_sieve(){
for(int i=0; i<SIEVE_SIZE; ++i) sieve[i] = true;
sieve[0] = sieve[1] = false;
for(int i=2; i*i<SIEVE_SIZE; ++i) if(sieve[i]) for(int j=2; i*j<SIEVE_SIZE; ++j) sieve[i*j] = false;
}
bool isprime(ll n){
if(n == 0 || n == 1) return false;
for(ll i=2; i*i<=n; ++i) if(n%i==0) return false;
return true;
}
template<typename T>
vector<T> gauss_jordan(const vector<vector<T>>& A, const vector<T>& b){
int n = A.size();
vector<vector<T>> B(n, vector<T>(n+1));
for(int i=0; i<n; ++i){
for(int j=0; j<n; ++j){
B[i][j] = A[i][j];
}
}
for(int i=0; i<n; ++i) B[i][n] = b[i];
for(int i=0; i<n; ++i){
int pivot = i;
for(int j=i; j<n; ++j){
if(abs(B[j][i]) > abs(B[pivot][i])) pivot = j;
}
swap(B[i], B[pivot]);
if(abs(B[i][i]) < EPS) return vector<T>(); //
for(int j=i+1; j<=n; ++j) B[i][j] /= B[i][i];
for(int j=0; j<n; ++j){
if(i != j){
for(int k=i+1; k<=n; ++k) B[j][k] -= B[i][j] * B[i][k];
}
}
}
vector<T> x(n);
for(int i=0; i<n; ++i) x[i] = B[i][n];
return x;
}
typedef vector<ll> vec;
typedef vector<vec> mat;
mat mul(mat &A, mat &B) {
mat C(A.size(), vec((int)B[0].size()));
for(int i=0; i<A.size(); ++i){
for(int k=0; k<B.size(); ++k){
for(int j=0; j<B[0].size(); ++j){
C[i][j] = (C[i][j] + A[i][k] * B[k][j] %MOD) % MOD;
}
}
}
return C;
}
mat mat_pow(mat A, ll n) {
mat B(A.size(), vec((int)A.size()));
for(int i=0; i<A.size(); ++i){
B[i][i] = 1;
}
while(n > 0) {
if(n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
bool operator<(const pii& a, const pii& b){
if(a.first == b.first) return a.second < b.second;
return a.first < b.first;
}
const int MAX = 510000;
long long fac[MAX], finv[MAX], inv[MAX];
//
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
//
long long COM(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
ll GCD(ll a, ll b){
if(b == 0) return a;
return GCD(b, a%b);
}
struct BipartiteMatching {
vector< vector< int > > graph;
vector< int > match, alive, used;
int timestamp;
BipartiteMatching(int n) : graph(n), alive(n, 1), used(n, 0), match(n, -1), timestamp(0) {}
void add_edge(int u, int v) {
graph[u].push_back(v);
graph[v].push_back(u);
}
bool dfs(int idx) {
used[idx] = timestamp;
for(auto &to : graph[idx]) {
int to_match = match[to];
if(alive[to] == 0) continue;
if(to_match == -1 || (used[to_match] != timestamp && dfs(to_match))) {
match[idx] = to;
match[to] = idx;
return true;
}
}
return false;
}
int bipartite_matching() {
int ret = 0;
for(int i = 0; i < graph.size(); i++) {
if(alive[i] == 0) continue;
if(match[i] == -1) {
++timestamp;
ret += dfs(i);
}
}
return ret;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
if(i < match[i]) {
cout << i << "-" << match[i] << endl;
}
}
}
};
long long extGCD(long long a, long long b, long long &x, long long &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a%b, y, x);
y -= a/b * x;
return d;
}
// mod (a = -11 OK)
inline long long mod(long long a, long long m) {
return (a % m + m) % m;
}
// ( a m )
long long modinv(long long a, long long m) {
long long x, y;
extGCD(a, m, x, y);
return mod(x, m); // x % m x
}
int dist[55][55];
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
//cout << fixed << setprecision(15);
int N; cin >> N;
vector<int> s(N);
REP(i,N) cin >> s[i];
for(int i=0; i<55; i++){
for(int j=0; j<55; j++){
dist[i][j] = 1<<29;
}
dist[i][i] = 0;
}
int M; cin >> M;
vector<vector<pair<int, int>>> G(55);
REP(i,M){
int a, b, c; cin >> a >> b >> c;
G[a].push_back(make_pair(b, c));
G[b].push_back(make_pair(a, c));
dist[a][b] = c;
dist[b][a] = c;
}
for(int k=0; k<N; k++){
for(int i=0; i<N; i++){
for(int j=0; j<N; j++){
dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
}
}
}
int ans = (1<<30);
for(int i=1; i<N-1; i++){
for(int j=1; j<N-1; j++){
if(i == j) continue;
int tmp = s[i] + s[j] + dist[0][i] + dist[i][j] + dist[j][N-1];
ans = min(ans, tmp);
}
}
cout << ans << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0