結果

問題 No.742 にゃんにゃんにゃん 猫の挨拶
ユーザー wakannyaaiwakannyaai
提出日時 2020-03-10 16:12:08
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 26 ms / 2,500 ms
コード長 8,545 bytes
コンパイル時間 2,053 ms
コンパイル使用メモリ 188,964 KB
実行使用メモリ 36,096 KB
最終ジャッジ日時 2024-11-15 23:23:50
合計ジャッジ時間 2,895 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 16
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include "bits/stdc++.h"
#include <random>
#include <algorithm>
#include <unordered_set>
#define rep(i,n) for(int i = 0; i < n; i++)
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
#define vll vector<vector<long long>>
#define vl vector<long long>
#define vi vector<int>
#define vii vector<vector<int>>
#define pb push_back
#define pf push_front
#define ld long double
#define Sort(a) sort(a.begin(),a.end())
#define cSort(a,cmp) sort(a.begin(),a.end(),cmp)
#define reSort(a) sort(a.rbegin(), a.rend())
static const ll llMAX = numeric_limits<long long>::max();
static const int intMAX = numeric_limits<int>::max();
static const ll llMIN = numeric_limits<long long>::min();
static const int intMIN = numeric_limits<int>::min();
static const ll d_5 = 100000;
static const ll d9_7 = 1000000007;
static const ll d_9 = 1000000000;
static const double PI=3.14159265358979323846;
template<class T>
void Printvector(std::vector<T> a){
int size = a.size();
rep(i,size){
cout<<a[i]<<" ";
}
cout<<endl;
}
template<class T>
void Printvector(std::vector<std::vector<T>> a){
int size = a.size();
rep(i,size){
int size2=a[i].size();
rep(j,size2){
cout<<a[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;
}
template<class T>
vector<T> getaccum(vector<T> a){
int size=a.size();
vector<T> ans(size);
ans[0]=a[0];
for(int i=0;i<size-1;i++){
ans[i+1]=ans[i]+a[i+1];
//ans[i+1]%=d9_7;
}
return ans;
}
template<class T>
vector<vector<T>> getaccum2D(vector<vector<T>> a){
int sizey=a.size();
int sizex=a[0].size();
vector<vector<T>> ans(sizey,vector<T>(sizex,0));
//ans=a;
ans[0][0]=a[0][0];
for(int i=1;i<sizex;i++){
ans[0][i]=ans[0][i-1]+a[0][i];
}
for(int i=1;i<sizex;i++){
ans[i][0]=ans[i-1][0]+a[i][0];
}
for (int i = 0; i < sizey-1; i++)
for (int j = 0; j < sizex-1; j++)
ans[i+1][j+1] = ans[i][j+1] + ans[i+1][j] - ans[i][j] + a[i+1][j+1];
return ans;
}
ll getaccumnum(vector<ll> accum,int l,int r){//[l,r]
if(l==0){
return accum[r];
}else{
return accum[r]-accum[l-1];
}
}
template<class T>
T getaccumnum2D(vector<vector<T>>& accum,int x1,int y1,int x2,int y2){//2
T ans=accum[y2][x2];
if(x1==0 && y1==0){
;
}else if(x1>0 && y1==0){
ans-=accum[y2][x1-1];
}else if(x1==0 && y1>0){
ans-=accum[y1-1][x2];
}else{
ans-=accum[y1-1][x2];
ans-=accum[y2][x1-1];
ans+=accum[y1-1][x1-1];
}
return ans;
}
ll digitpower(ll a,ll b){//ab
if(b==1){
return a;
}else if(b==0){
return 1;
}
int mode=0;
if(b%2==1){
ll tmp = digitpower(a,(b-1)/2);
if(mode==1){
tmp%=d9_7;
}
tmp*=tmp;
if(mode==1){
tmp%=d9_7;
}
tmp*=a;
if(mode==1){
return tmp%d9_7;
}else{
return tmp;
}
}else{
ll tmp = digitpower(a,(b)/2);
if(mode==1){
tmp%=d9_7;
}
tmp*=tmp;
if(mode==1){
tmp%=d9_7;
}
if(mode==1){
return tmp%d9_7;
}else{
return tmp;
}
}
}
vl facs(2000010,-1);
ll Factrial(ll num){
if(facs[num]!=-1){
return facs[num];
}
if(num==1||num<=0){
return 1;
}else if(num<0){
printf("ERROR_minus\n");
return 0;
}else{
facs[num]=(num*Factrial(num-1))%d9_7;
return facs[num];
}
}
long long modinv(long long a, long long m) {//mod
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
vl invs(2000010,-1);
ll linercomb(ll n,ll k, ll mod){//n,k
if(n<k)return 0;
if(n<0)return 0;
if(k==0 || k==n)return 1;
ll ans=Factrial(n);
if(invs[k]==-1){
invs[k]=modinv(Factrial(k),mod);
}
ans*=invs[k];
ans%=d9_7;
ll k1=Factrial(n-k);
k1%=mod;
ans*=modinv(k1,mod);
ans%=mod;
return ans;
}
unordered_map<ll,ll> prime_factor(int64_t n) {
unordered_map<ll,ll> ret;
for(int64_t i = 2; i * i <= n; i++) {
while(n % i == 0) {
ret[i]++;
n /= i;
}
}
if(n != 1) ret[n] = 1;
return ret;
}
struct datas{
ll p;
ll q;
};/*
bool cmp(const datas &a, const datas &b)
{
return a.num < b.num;
}*/
template<class T>
T gcd(T a,T b){
if(a==0){
return b;
}else if(b==0){
return a;
}
while(1) {
if(a < b) swap(a, b);
if(!b) break;
a %= b;
}
return a;
}
int LCS(string s,string t) {
int n=s.size();
int m=t.size();
vector<vector<int>> dp=vector<vector<int>>(n+1,vector<int>(m+1,0));
for (int i=0; i<n; ++i) {
for (int j=0; j<m; ++j) {
if (s[i] == t[j]) {
dp[i+1][j+1] = dp[i][j] + 1;
}
else {
dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]);
}
}
}
return dp[n][m];
}
//
#define P 100000
vl primes;
vl primenum(P+1);
vector<bool> bprime(P+200);
ll searchprime(ll max){//
//max+=180;
bprime[1]=false;
// cout<<"rrr"<<endl;;
//cout<<max<<" "<<bprime.size()<<endl;
for(ll i=2;i<=max;i++){
bprime[i]=true;
}
//// cout<<"r";
ll nowprimes=1;
primes.pb(2);
for(ll i=4;i<max;i+=2){
bprime[i]=false;
}
// cout<<"e";
for(ll i=3;i<=max;i+=2){
if(bprime[i]==true){
//primes[nowprimes]=i;
primes.pb(i);
nowprimes++;
for(ll j=2;i*j<=max;j++){
bprime[i*j]=false;
}
}
}
return nowprimes;
}
class Inversion_number{
//Segment Tree
private:
int n=-1;
bool calced=false;
vector<int> vec;
vector<int> locs;
vector<int> invnum;
class SegmentTree{
public:
int n;
vector<int> nodes;
//constructor
SegmentTree(int size,int init){
initialize(size,init);
}
SegmentTree(){
;
}
//(minmax)
int thisoperator(int a, int b){
return a+b;
}
void update(int x,int a){//xindex
x+=n-1;
nodes[x]+=a;
while(x>0){
x=(x-1)/2;
nodes[x]=thisoperator(nodes[2*x+1],nodes[2*x+2]);
}
}
void initialize(int inputn,int init){
int k=0;
while(inputn>(1<<k)){
k++;
}
n=(1<<k);
nodes=vector<int> ((1<<k)*2-1,init);
}
int sec_get(int reql,int reqr,int nowindex=0,int nowl=0,int nowr=-1){
// [0, n)
//reqr
if(nowr < 0) nowr = n;
// ->
if(nowr <= reql || reqr <= nowl) return 0;
// -> 使
if(reql <= nowl && nowr <= reqr) return nodes[nowindex];
// ->
// vl vr
//
int val1 = sec_get(reql, reqr, 2*nowindex+1, nowl, (nowl+nowr)/2);
int val2 = sec_get(reql, reqr, 2*nowindex+2, (nowl+nowr)/2, nowr);
return thisoperator(val1, val2);
}
void Printn(){
cout<<"Printvector"<<endl;
rep(i,n){
cout<<nodes[i+n-1]<<" ";
}
cout<<endl;
}
};
SegmentTree seg;
public:
Inversion_number(vector<int> invec){//constructor
vec=invec;
n=invec.size();
seg.initialize(n,0);
invnum=vector<int>(n,0);
locs=vector<int>(n,-1);
for(int i=0;i<n;i++){
locs[vec[i]]=i;
}
}
void calc(){
if(n==-1){
cout<<"unconstructed"<<endl;
return;
}
for(int i=0;i<n;i++){
int num=seg.sec_get(0,vec[i]+1);
invnum[i]=i-num;
seg.update(vec[i],1);
}
calced=true;
}
int getinvnum(int index){
if(!calced){
cout<<"not calced"<<endl;
return -1;
}
return invnum[index];
}
};
int main(void){
ll n;
cin>>n;
vi m(n);
rep(i,n){cin>>m[i];m[i]--;}
Inversion_number inv(m);
inv.calc();
int ans=0;
rep(i,n){
ans+=inv.getinvnum(i);
}
cout<<ans<<endl;
return 0;
}
//<<std::setprecision(30)
//
/* std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());*/
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0