結果
問題 | No.488 四角関係 |
ユーザー | mikhail |
提出日時 | 2020-03-10 20:33:23 |
言語 | Java21 (openjdk 21) |
結果 |
AC
|
実行時間 | 199 ms / 5,000 ms |
コード長 | 21,546 bytes |
コンパイル時間 | 3,025 ms |
コンパイル使用メモリ | 92,508 KB |
実行使用メモリ | 46,360 KB |
最終ジャッジ日時 | 2024-11-15 23:35:54 |
合計ジャッジ時間 | 6,251 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 110 ms
43,384 KB |
testcase_01 | AC | 154 ms
44,152 KB |
testcase_02 | AC | 139 ms
44,796 KB |
testcase_03 | AC | 99 ms
40,396 KB |
testcase_04 | AC | 116 ms
42,108 KB |
testcase_05 | AC | 198 ms
46,360 KB |
testcase_06 | AC | 130 ms
45,200 KB |
testcase_07 | AC | 199 ms
46,108 KB |
testcase_08 | AC | 169 ms
43,612 KB |
testcase_09 | AC | 53 ms
37,076 KB |
testcase_10 | AC | 88 ms
39,036 KB |
testcase_11 | AC | 54 ms
36,928 KB |
testcase_12 | AC | 76 ms
38,496 KB |
testcase_13 | AC | 76 ms
39,432 KB |
testcase_14 | AC | 58 ms
37,088 KB |
testcase_15 | AC | 54 ms
37,392 KB |
testcase_16 | AC | 53 ms
37,108 KB |
testcase_17 | AC | 55 ms
36,916 KB |
testcase_18 | AC | 54 ms
37,268 KB |
testcase_19 | AC | 55 ms
37,000 KB |
testcase_20 | AC | 54 ms
37,124 KB |
testcase_21 | AC | 53 ms
37,104 KB |
testcase_22 | AC | 53 ms
37,128 KB |
testcase_23 | AC | 53 ms
36,976 KB |
testcase_24 | AC | 53 ms
37,180 KB |
ソースコード
import java.io.*; import java.util.*; class Main{ void solve(){ int N = ni(); int M = ni(); Node[] nodes = new Node[N]; for(int i = 0; i < N; i++){ nodes[i] = new Node(i, 0); } for(int i = 0; i < M; i++){ int a = ni(); int b = ni(); nodes[a].addEdge(new Edge(a, b, 1)); nodes[b].addEdge(new Edge(b, a, 1)); } if(N < 4){ out.println(0); out.flush(); return; } // 4頂点の組み合わせを全探索し、全ての頂点が他の2頂点とのみ繋がっている組み合わせをカウントする int ans = 0; for(int a = 0; a < N - 3; a++){ for(int b = a + 1; b < N - 2; b++){ for(int c = b + 1; c < N - 1; c++){ for(int d = c + 1; d < N; d++){ int count = 0; for(Edge e : nodes[a].edges){ if(e.to == b || e.to == c || e.to == d){ count++; } } if(count != 2) continue; count = 0; for(Edge e : nodes[b].edges){ if(e.to == a || e.to == c || e.to == d){ count++; } } if(count != 2) continue; count = 0; for(Edge e : nodes[c].edges){ if(e.to == a || e.to == b || e.to == d){ count++; } } if(count != 2) continue; count = 0; for(Edge e : nodes[d].edges){ if(e.to == a || e.to == b || e.to == c){ count++; } } if(count != 2) continue; ans++; } } } } out.println(ans); out.flush(); } public static void main(String[] args){ Main m = new Main(); m.solve(); } Main(){ this.scan = new FastScanner(); this.out = new PrintWriter(System.out); } private FastScanner scan; private PrintWriter out; private final int MOD = 1_000_000_007; private final int INF = 2_147_483_647; private final long LINF = 9223372036854775807L; private long[] fac; private long[] finv; private long[] inv; // Scanner int ni(){ return scan.nextInt();} int[] ni(int n){int[] a = new int[n]; for(int i = 0; i < n; i++){a[i] = ni();} return a;} int[][] ni(int y, int x){int[][] a = new int[y][x]; for(int i = 0; i < y; i++){for(int j = 0; j < x; j++){a[i][j] = ni();}} return a;} long nl(){return scan.nextLong();} long[] nl(int n){long[] a = new long[n]; for(int i = 0; i < n; i++){a[i] = nl();} return a;} long[][] nl(int y, int x){long[][] a = new long[y][x]; for(int i = 0; i < y; i++){for(int j = 0; j < x; j++){a[i][j] = nl();}} return a;} String ns(){return scan.next();} String[] ns(int n){String[] a = new String[n]; for(int i = 0; i < n; i++){a[i] = ns();} return a;} String[][] ns(int y, int x){String[][] a = new String[y][x]; for(int i = 0; i < y; i++){for(int j = 0; j < x; j++){a[i][j] = ns();}} return a;} // Mathematics int max(int a, int b){return Math.max(a, b);} long max(long a, long b){return Math.max(a, b);} double max(double a, double b){return Math.max(a, b);} int max(int[] a){int max = a[0]; for(int value:a){max = max(max,value);} return max;} long max(long[] a){long max = a[0]; for(long value:a){max = max(max,value);} return max;} double max(double[] a){double max = a[0]; for(double value:a){max = max(max,value);} return max;} int min(int a, int b){return Math.min(a, b);} long min(long a, long b){return Math.min(a, b);} double min(double a, double b){return Math.min(a, b);} int min(int[] a){int min = a[0]; for(int value:a){min = min(min,value);} return min;} long min(long[] a){long min = a[0]; for(long value:a){min = min(min,value);} return min;} double min(double[] a){double min = a[0]; for(double value:a){min = min(min,value);} return min;} long sum(int[] a){long sum = 0; for(int value:a){sum += value;} return sum;} long sum(long[] a){long sum = 0; for(long value:a){sum += value;} return sum;} double sum(double[] a){double sum = 0; for(double value:a){sum += value;} return sum;} int gcd(int a, int b){return b == 0 ? a : gcd(b, a % b);} long gcd(long a, long b){return b == 0 ? a : gcd(b, a % b);} int lcm(int a, int b){return a / gcd(a, b) * b;} long lcm(long a, long b){return a / gcd(a, b) * b;} long fact(int n){ if(n == 0){ return 1; } long a = n; for(long i = n - 1; i >= 2; i--){ a = a % MOD * i; } return a; } long fact(long n){ if(n == 0){ return 1; } long a = n; for(long i = n - 1; i >= 2; i--){ a = a % MOD * i; } return a; } // nPr(int) long npr(int n, int r){ long a = 1; for(int i = n; i > n - r; i--){ a *= i; } return a; } // nPr(long) long npr(long n, long r){ long a = 1; for(long i = n; i > n - r; i--){ a *= i; } return a; } // 素数判定(int) boolean checkPrime(int n){ for(int i = 2; i * i <= n; i++){ if(n % i == 0){ return false; } } return true; } // 素数判定(long) boolean checkPrime(long n){ for(long i = 2; i * i <= n; i++){ if(n % i == 0){ return false; } } return true; } // エラトステネスの篩 long[] erathos(int n){ boolean[] flag = new boolean[n + 1]; TreeSet<Integer> nums = new TreeSet<>(); for(int i = 2; i <= n; i++){ if(flag[i]) continue; nums.add(i); for(int j = i * 2; j <= n; j += i){ flag[j] = true; } } long[] primes = new long[nums.size()]; int index = 0; for(int num : nums){ primes[index] = num; index++; } return primes; } // mod pにおける累乗 a^n long modpow(long a, long n, long p){ long res = 1; while(n > 0){ if((n & 1) == 1){ res = res * a % p; } a = a * a % p; n = n >> 1; } return res; } // mod pにおけるaの逆元a^-1 long modinv(long a, long p){ return modpow(a, p - 2, p); } // fac,finv,invの初期化 void comInit(int max){ fac = new long[max]; finv = new long[max]; inv = new long[max]; fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for(int i = 2; i < max; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数nCr long com(int n, int r){ if(n < r || (n < 0 || r < 0)){ return 0; } return fac[n] * (finv[r] * finv[n - r] % MOD) % MOD; } // 二項係数nCr(nが10^9など巨大なとき用) long ncr(long n, long k){ long a = 1; long b = 1; for(int i = 1; i <= k; i++){ a = a * (n + 1 - i) % MOD; b = b * i % MOD; } return modinv(b, MOD) * a % MOD; } // 二次元上の二点間の距離 double distance(double x1, double y1, double x2, double y2){ double dist = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); return dist; } // 三次元上の二点間の距離 double distance(double x1, double y1, double z1, double x2, double y2, double z2){ double dist = Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (z1 - z2) * (z1 - z2)); return dist; } // Array void sort(int[] a){ Arrays.sort(a);} void sort(long[] a){ Arrays.sort(a);} void sort(double[] a){ Arrays.sort(a);} void sort(String[] a){ Arrays.sort(a);} int[] reverse(int[] a){ int[] reversed = new int[a.length]; for(int i = 0; i < a.length; i++){ reversed[a.length - i - 1] = a[i]; } return reversed; } long[] reverse(long[] a){ long[] reversed = new long[a.length]; for(int i = 0; i < a.length; i++){ reversed[a.length - i - 1] = a[i]; } return reversed; } double[] reverse(double[] a){ double[] reversed = new double[a.length]; for(int i = 0; i < a.length; i++){ reversed[a.length - i - 1] = a[i]; } return reversed; } char[] reverse(char[] a){ char[] reversed = new char[a.length]; for(int i = 0; i < a.length; i++){ reversed[a.length - i - 1] = a[i]; } return reversed; } String[] reverse(String[] a){ String[] reversed = new String[a.length]; for(int i = 0; i < a.length; i++){ reversed[a.length - i - 1] = a[i]; } return reversed; } boolean[] reverse(boolean[] a){ boolean[] reversed = new boolean[a.length]; for(int i = 0; i < a.length; i++){ reversed[a.length - i - 1] = a[i]; } return reversed; } void fill(int[] array, int x) { Arrays.fill(array, x); } void fill(long[] array, long x) { Arrays.fill(array, x); } void fill(double[] array, double x) { Arrays.fill(array, x); } void fill(boolean[] array, boolean x) { Arrays.fill(array, x); } void fill(int[][] array, int x) { for(int a[] : array) { fill(a, x); } } void fill(long[][] array, long x) { for(long a[] : array) { fill(a, x); } } void fill(double[][] array, double x) { for(double a[] : array) { fill(a, x); } } void fill(boolean[][] array, boolean x) { for(boolean a[] : array) { fill(a, x); } } void fill(int[][][] array, int x) { for(int[][] ary : array) { for(int[] a : ary){ fill(a, x); } } } void fill(long[][][] array, long x) { for(long[][] ary : array) { for(long[] a : ary){ fill(a, x); } } } // Algorithm // 深さ優先探索 /* void dfs(Node[] nodes, int v, boolean[] seen){ seen[v] = true; for(Edge edge : nodes[v].edges){ if(seen[edge.to]) continue; dfs(nodes, edge.to, seen); } } */ // 幅優先探索 long[] bfs(Node[] nodes, int start){ Queue<Integer> queue = new ArrayDeque<>(); queue.add(start); long[] dist = new long[nodes.length]; fill(dist, -1); dist[start] = 0; while(!queue.isEmpty()){ int now = queue.poll(); for(Edge edge : nodes[now].edges){ if(dist[edge.to] != -1) continue; dist[edge.to] = dist[now] + 1; queue.add(edge.to); } } return dist; } // ダイクストラ法 long[] dijkstra(Node[] nodes, int start){ Queue<Edge> queue = new PriorityQueue<>(); long[] dist = new long[nodes.length]; fill(dist, LINF / 2); dist[start] = 0; queue.add(new Edge(start, start, dist[start])); while(!queue.isEmpty()){ Edge now = queue.poll(); if(dist[now.to] < now.cost) continue; for(Edge edge : nodes[now.to].edges){ if(dist[edge.to] > dist[edge.from] + edge.cost){ dist[edge.to] = dist[edge.from] + edge.cost; queue.add(new Edge(edge.from, edge.to, dist[edge.to])); nodes[edge.to].past = edge.from; } } } return dist; } // ソート済みint型配列でkey以上の値の最小indexを返す int lowerBound(int[] a, int key){ int ng = -1; int ok = a.length; while(Math.abs(ok - ng) > 1){ int mid = (ok + ng) / 2; if(a[mid] >= key){ ok = mid; } else { ng = mid; } } return ok; } // ソート済みlong型配列でkey以上の値の最小indexを返す int lowerBound(long[] a, long key){ int ng = -1; int ok = a.length; while(Math.abs(ok - ng) > 1){ int mid = (ok + ng) / 2; if(a[mid] >= key){ ok = mid; } else { ng = mid; } } return ok; } // 文字列sとtの最長共通部分列の長さを返す int lcs(String s , String t){ int[][] dp = new int[s.length() + 1][t.length() + 1]; for(int i = 0; i < s.length(); i++){ for(int j = 0; j < t.length(); j++){ if(s.charAt(i) == t.charAt(j)){ dp[i + 1][j + 1] = max(dp[i][j] + 1, dp[i + 1][j + 1]); } dp[i + 1][j + 1] = max(dp[i + 1][j + 1], dp[i + 1][j]); dp[i + 1][j + 1] = max(dp[i + 1][j + 1], dp[i][j + 1]); } } return dp[s.length()][t.length()]; } } // ノード class Node{ int id; // ノード番号 int past; // 直前の頂点 List<Edge> edges; // 辺のリスト Node(int id, int past){ this.id = id; this.past = past; this.edges = new ArrayList<>(); } void addEdge(Edge edge){ edges.add(edge); } public boolean equals(Object obj){ if(obj instanceof Node){ Node node = (Node)obj; return this.id == node.id; } return false; } public int hashCode(){ return id; } public String toString(){ return "[id:" + id + " past: " + past + "]"; } } // 辺の情報を持つクラス class Edge implements Comparable<Edge>{ int from; // どの頂点から int to; // どの頂点へ long cost; // 辺の重み Edge(int from, int to, long cost){ this.from = from; this.to = to; this.cost = cost; } public int compareTo(Edge edge){ return Long.compare(this.cost, edge.cost); } public String toString(){ return "[" + from + " to " + to + " cost:" + cost + "]"; } } // 辺の重み比較のComparator class EdgeComparator implements Comparator<Edge>{ @Override public int compare(Edge e1, Edge e2){ long cost1 = e1.cost; long cost2 = e2.cost; if(cost1 < cost2){ return -1; } else if(cost1 > cost2){ return 1; } else { return 0; } } } // Union-Find class UnionFind{ int[] par; int[] size; UnionFind(int N){ par = new int[N]; size = new int[N]; for(int i = 0; i < N; i++){ par[i] = i; size[i] = 1; } } void init(int N){ for(int i = 0; i < N; i++){ par[i] = i; size[i] = 1; } } int root(int x){ if(par[x] == x){ return x; } else { return par[x] = root(par[x]); } } boolean same(int x, int y){ return root(x) == root(y); } void unite(int x, int y){ x = root(x); y = root(y); if(x == y) return; if(size[x] < size[y]){ int tmp = x; x = y; y = tmp; } size[x] += size[y]; par[y] = x; } int size(int x){ return size[root(x)]; } } // 順列を管理する class Permutation { private int number; private int listSize; private int searched; private int nextIndex; private int[][] permList; Permutation(int num) { this.number = num; this.listSize = this.fact(this.number); this.searched = 0; this.nextIndex = 0; this.permList = new int[this.listSize][this.number]; this.create(0, new int[this.number], new boolean[this.number]); } int[] nextPerm() { return permList[this.nextIndex++]; } boolean isNext() { if(this.nextIndex < this.listSize) { return true; } else { this.nextIndex = 0; return false; } } int fact(int n){ return n == 0 ? 1 : n * fact(n-1); } void create(int num, int[] list, boolean[] flag) { if(num == this.number) { copyArray(list, permList[this.searched]); this.searched++; } for(int i = 0; i < this.number; i++){ if(flag[i]) continue; list[num] = i; flag[i] = true; this.create(num+1, list, flag); flag[i] = false; } } void copyArray(int[] from, int[] to) { for(int i=0; i<from.length; i++) to[i] = from[i]; } void printNum(int[] nums) { for(int n : nums) System.out.print(n); System.out.println(); } } // 一点更新区間取得Segment Tree /* class SegTree{ int[] dat; int size; SegTree(int N){ this.dat = new int[N * 4]; this.size = N; } // [a, b]の最小値を返す // l,rにはノードkに対応する区間を与える int query(int a, int b, int k, int l, int r){ if(r < a || b < l) return Integer.MAX_VALUE; if(a <= l && r <= b) return dat[k]; int vl = query(a, b, k << 1, l, (l + r) / 2); int vr = query(a, b, (k << 1) + 1, (l + r) / 2 + 1, r); return Math.min(vl, vr); } // インデックスiの値をxに更新 void update(int i, int x){ i += this.size - 1; dat[i] = x; while(i > 0){ i = i >> 1; // 1ビットぶん右シフト dat[i] = Math.min(dat[i << 1], dat[(i << 1) + 1]); } } public String toString(){ StringBuilder sb = new StringBuilder("["); for(int i = size; i < 2 * size; i++){ sb.append(dat[i]).append(","); } sb.delete(sb.length() - 1, sb.length()); String output = sb.append("]").toString(); return output; } } */ // Range Sum Queryを実現するBinary Indexed Tree class BIT{ int[] tree; BIT(int N){ this.tree = new int[N + 1]; } int sum(int i){ int sum = 0; while(i > 0){ sum += this.tree[i]; i -= i & -i; } return sum; } void add(int i, int x){ while(i <= tree.length){ this.tree[i] += x; i += i & -i; } } public String toString(){ StringBuilder sb = new StringBuilder("["); for(int i = 0; i < tree.length; i++){ sb.append(tree[i] + ","); } sb.append("]"); String output = sb.toString(); return output; } } // 標準のScannerより高速に標準入力する class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b)){ return minus ? -n : n; }else{ throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next());} }