結果
問題 | No.306 さいたま2008 |
ユーザー | f1b_maxbl00d |
提出日時 | 2020-03-11 20:34:05 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,115 bytes |
コンパイル時間 | 1,127 ms |
コンパイル使用メモリ | 132,700 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-04-27 19:24:14 |
合計ジャッジ時間 | 1,758 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 1 ms
6,944 KB |
testcase_15 | AC | 1 ms
6,940 KB |
testcase_16 | AC | 1 ms
6,944 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 1 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,944 KB |
testcase_22 | AC | 2 ms
6,944 KB |
ソースコード
#include <iostream> #include <vector> #include <limits.h> #include <algorithm> #include <string> #include <math.h> #include <limits.h> #include <queue> #include <map> #include <set> #include <iomanip> #include <bitset> #include <cassert> #include <random> #include <functional> #include <stack> #include <iomanip> #include <cassert> //#include <boost/multiprecision/cpp_int.hpp> #include <complex> #include <cstdio> #include <list> //< in.txt > out.txt using namespace std; //std::ios::sync_with_stdio(false); //std::cin.tie(0); const long long MOD = 1e9 + 7; typedef long long LL; typedef long double LD; typedef pair<LL, LL> PLL; typedef pair<LD, LL> PDL; typedef pair<LD, LD> PDD; typedef vector<LL> VLL; typedef vector<VLL> VVLL; //typedef boost::multiprecision::cpp_int bigint; template<class T> void in(T& x) { cin >> x; } template<class T1, class T2> void in(pair<T1, T2>& p) { in(p.first); in(p.second); } template<class T> void in(vector<T>& v, LL st = -1, LL en = -1) { if (st == -1) { st = 0; en = v.size() - 1; } for (LL n = st; n <= en; n++) { in(v[n]); } } typedef complex<LD> Point; const LD eps = 1e-8; const LD pi = acos(-1.0); //イコール bool equal(Point a, Point b) { return (abs(a - b) < eps); } //内積 LD dot(Point a, Point b) { return real(conj(a) * b); } //外積 LD cross(Point a, Point b) { return imag(conj(a) * b); } //直線(2点保持) struct Line { Point s, e; }; //円(中心と半径) struct Circle { Point p; LD r; }; //三点の位置関係 //1 -> a,b,cが反時計回りの順に並ぶ //-1 -> a,b,cが時計回りの順に並ぶ //2 -> c,a,bの順に直線に並ぶ //-2 -> a,b,cの順に直線に並ぶ //0 -> a,c,bの順に直線に並ぶ int threePointsPosition(Point a, Point b, Point c) { b -= a; c -= a; if (cross(b, c) > eps)return 1; if (cross(b, c) < -eps)return -1; if (dot(b, c) < 0)return 2; if (norm(b) < norm(c))return -2; return 0; } //二直線の交差判定(2直線のなす角!=0) bool isis_ll(Line l, Line m) { return !equal(cross(l.e - l.s, m.e - m.s), 0); } //直線lと線分sの交差判定 //(線分の一端ともう一端が、直線を挟んで逆側にあればよい) bool isis_ls(Line l, Line s) { return (cross(l.e - l.s, s.s - l.s) * cross(l.e - l.s, s.e - l.s) < eps); } //点が直線状に存在するかの判定 //(直線状2点にそれぞれ線を結び、なす角=0orπ) bool isis_lp(Line l, Point p) { return(abs(cross(l.e - p, l.s - p)) < eps); } //点が線分上に存在するかの判定 //(線分の2点までの距離の和が線分の長さに等しければよい) bool isis_sp(Line s, Point p) { return (abs(s.e - p) + abs(s.s - p) - abs(s.e - s.s) < eps); } //線分と線分の交差判定 bool isis_ss(Line s, Line t) { LL res1 = threePointsPosition(s.s, s.e, t.s) * threePointsPosition(s.s, s.e, t.e); LL res2 = threePointsPosition(t.s, t.e, s.s) * threePointsPosition(t.s, t.e, s.e); return (res1 <= 0 && res2 <= 0); } //点から直線に下ろす垂線の足 Point proj(Line l, Point p) { Point a = p - l.s, b = l.e - l.s; return l.s + (dot(a, b) / norm(b)) * b; } //直線と直線の交点 Point is_ll(Line s, Line t) { Point sv = s.e - s.s, tv = t.e - t.s; assert(cross(sv, tv) != 0); return s.s + sv * cross(tv, t.s - s.s) / cross(tv, sv); } LD dist_lp(Line l, Point p) { return abs(p - proj(l, p)); } LD dist_ll(Line l, Line m) { return isis_ll(l, m) ? 0 : dist_lp(l, m.s); } LD dist_ls(Line l, Line s) { return isis_ls(l, s) ? 0 : min(dist_lp(l, s.s), dist_lp(l, s.e)); } LD dist_sp(Line s, Point p) { Point r = proj(s, p); return isis_sp(s, r) ? abs(r - p) : min(abs(s.e - p), abs(s.s - p)); } LD dist_ss(Line s, Line t) { if (isis_ss(s, t))return 0; return min({ dist_sp(s,t.s),dist_sp(s,t.e),dist_sp(t,s.s),dist_sp(t,s.e) }); } istream& operator>>(istream& is, Point& p) { LD x, y; cin >> x >> y; p = Point(x, y); return is; } istream& operator>>(istream& is, Line& l) { Point a, b; cin >> a >> b; l = { a,b }; return is; } LD degtorad(LL theta) { return theta * pi / 180; } LD radtodeg(LL theta) { return theta * 180 / pi; } //点Xを、点Cを中心に\theta rad回転 Point rotate(Point X, Point C, LD theta) { return (X - C) * Point(cosl(theta), sinl(theta)) + C; } //e^{i\theta }を返す Point eitheta(LD theta) { return Point(cosl(theta), sinl(theta)); } LD abs(Point p) { return sqrtl(p.real() * p.real() + p.imag() * p.imag()); } //頂点が反時計回りに与えられている多角形 using Polygon = vector<Point>; //三角形の面積 LD area(Point a, Point b, Point c) { return fabsl(cross(b - a, c - a)) / 2; } //多角形の面積 LD area(Polygon P) { LD ans = 0; for (LL n = 1; n < P.size() - 1; n++) { LL iscl = threePointsPosition(P[0], P[n], P[n + 1]); if (abs(iscl) != 1)continue; if (iscl == 1) { ans += area(P[0], P[n], P[n + 1]); } else { ans -= area(P[0], P[n], P[n + 1]);; } } return ans; } //多角形の凸性判定 bool isConvex(Polygon P) { for (LL n = 0; n < P.size(); n++) { if (threePointsPosition(P[n], P[(n + 1) % P.size()], P[(n + 2) % P.size()]) == -1) { return false; } } return true; } //多角形に対して点がどこにあるか //0->内部 1->辺上 2->外部 LL isPointin(Polygon Poly, Point P) { bool in = false; for (LL i = 0; i < Poly.size(); i++) { Point a = Poly[i] - P; Point b = Poly[(i + 1) % Poly.size()] - P; if (a.imag() > b.imag())swap(a, b); if (a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0) in = !in; if (cross(a, b) == 0 && dot(a, b) <= 0) return 1; } return in ? 0 : 2; } template<> void in(Point& p) { LD r, i; cin >> r >> i; p = { r,i }; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(0); Point A, B; cin >> A >> B; LD left = 0, right = 1000; for (LL t = 0; t < 100; t++) { LD c1 = (left * 2 + right) / 3; LD c2 = (left + right * 2) / 3; LD f1 = abs(A - Point(0, c1))+abs(B-Point(0,c1)); LD f2 = abs(A - Point(0, c2)) + abs(B - Point(0, c2)); if (f1 > f2)left = c1; else right = c2; } cout << setprecision(12) << (left + right) / 2 << "\n"; return 0; }