結果

問題 No.160 最短経路のうち辞書順最小
ユーザー not_522
提出日時 2015-08-19 11:21:12
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 17 ms / 5,000 ms
コード長 7,470 bytes
コンパイル時間 1,527 ms
コンパイル使用メモリ 185,580 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-18 10:28:19
合計ジャッジ時間 2,423 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 26
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
template<typename T> class Ordered {
public:
template<typename V> bool operator==(const V& v) const {
return !(static_cast<T>(v) < static_cast<const T&>(*this) || static_cast<const T&>(*this) < static_cast<T>(v));
}
template<typename V> bool operator!=(const V& v) const {
return static_cast<T>(v) < static_cast<const T&>(*this) || static_cast<const T&>(*this) < static_cast<T>(v);
}
template<typename V> bool operator>(const V& v) const {
return static_cast<T>(v) < static_cast<const T&>(*this);
}
template<typename V> bool operator<=(const V& v) const {
return !(static_cast<T>(v) < static_cast<const T&>(*this));
}
template<typename V> bool operator>=(const V& v) const {
return !(static_cast<const T&>(*this) < static_cast<T>(v));
}
};
template<typename Edge> class Graph {
public:
typedef Edge EdgeType;
virtual int size() const = 0;
template<typename... Args> void addEdge(Args...) {}
template<typename... Args> void addUndirectedEdge(Args...) {}
virtual vector<Edge> getEdges() const = 0;
virtual vector<Edge> getEdges(int from) const = 0;
virtual vector<Edge> getEdges(int from, int to) const = 0;
virtual int getDegree(int v) const = 0;
};
template<typename Edge> class AdjacencyList : public Graph<Edge> {
protected:
vector<vector<Edge>> graph;
public:
AdjacencyList(int n) : graph(n) {}
int size() const {
return graph.size();
}
template<typename... Args> void addEdge(Args... args) {
Edge edge(args...);
graph[edge.from].emplace_back(edge);
}
template<typename... Args> void addUndirectedEdge(Args... args) {
Edge edge(args...);
addEdge(edge);
swap(edge.from, edge.to);
addEdge(edge);
}
vector<Edge> getEdges() const {
vector<Edge> res;
for (const auto& edges : graph) {
res.insert(res.end(), edges.begin(), edges.end());
}
return res;
}
vector<Edge> getEdges(int from) const {
return graph[from];
}
vector<Edge> getEdges(int from, int to) const {
vector<Edge> res;
for (const auto& edge : graph[from]) {
if (edge.to == to) res.emplace_back(edge);
}
return res;
}
int getDegree(int v) const {
return graph[v].size();
}
vector<Edge>& operator[](int v) {
return graph[v];
}
};
template<typename Graph, typename State> class Search {
protected:
typedef typename Graph::EdgeType Edge;
const Graph graph;
vector<bool> visited;
virtual void push(const State&) = 0;
virtual State next() = 0;
virtual bool isRunning() = 0;
virtual void visit(const State&) {}
virtual bool canPruning(const State&) {return false;}
public:
Search(const Graph& graph) : graph(graph), visited(graph.size(), false) {}
void solve(int from) {
push(State(from));
while (isRunning()) {
State now = next();
int pos = now.getPos();
if (visited[pos]) continue;
visited[pos] = true;
visit(now);
for (const Edge& edge : graph.getEdges(pos)) {
State nextState = now.next(edge);
if (visited[nextState.getPos()]) continue;
if (canPruning(nextState)) continue;
push(nextState);
}
}
}
bool isReachable(int v) {
return visited[v];
}
};
template<typename Edge> class Tree {
public:
vector<Edge> parent;
vector<vector<int>> children;
vector<int> depth;
Tree() {}
Tree(int n) : children(n), depth(n, -1) {
for (int i = 0; i < n; ++i) parent.emplace_back(i, i);
}
int size() const {
return parent.size();
}
template<typename... Args> void addEdge(Args... args) {
Edge edge(args...);
parent[edge.from] = edge;
if (edge.from != edge.to) children[edge.to].emplace_back(edge.from);
}
int getDepth(int v) {
if (depth[v] != -1) return depth[v];
if (parent[v].to == v) return depth[v] = 0;
return depth[v] = getDepth(parent[v].to) + 1;
}
vector<int> getPath(int v) {
vector<int> res{v};
while (v != parent[v].to) {
v = parent[v].to;
res.emplace_back(v);
}
return res;
}
};
template<typename Edge> struct DijkstraState {
typedef typename Edge::CostType Cost;
Edge edge;
Cost cost;
DijkstraState(int pos) : edge(pos, pos), cost(0) {}
DijkstraState(const Edge& edge, Cost cost) : edge(edge), cost(cost) {}
DijkstraState next(const Edge& edge) const {
return DijkstraState(edge, cost + edge.cost);
}
bool operator<(const DijkstraState& state) const {
return cost > state.cost;
}
int getPos() const {
return edge.to;
}
};
template<typename Graph, bool Restoration = false, typename State = DijkstraState<typename Graph::EdgeType>> class Dijkstra : public Search<Graph,
    State> {
protected:
typedef typename Graph::EdgeType Edge;
typedef typename Edge::CostType Cost;
const Cost INF = numeric_limits<Cost>::max();
priority_queue<State> que;
void push(const State& state) {
que.push(state);
dis[state.getPos()] = state.cost;
}
State next() {
State now = que.top();
que.pop();
return now;
}
bool isRunning() {
return !que.empty();
}
void visit(const State& state) {
if (Restoration) {
auto e = state.edge;
swap(e.from, e.to);
shortestPathTree.addEdge(e);
}
}
bool canPruning(const State& state) {
return dis[state.getPos()] <= state.cost;
}
public:
vector<Cost> dis;
Tree<Edge> shortestPathTree;
Dijkstra(const Graph& graph) : Search<Graph, State>(graph), dis(graph.size(), INF) {
if (Restoration) shortestPathTree = Tree<Edge>(graph.size());
}
};
template<typename Graph> inline Dijkstra<Graph> shortestPath(Graph& graph, int from) {
Dijkstra<Graph> dijkstra(graph);
dijkstra.solve(from);
return dijkstra;
}
template<typename Graph> inline typename Graph::EdgeType::CostType shortestPath(Graph& graph, int from, int to) {
Dijkstra<Graph> dijkstra(graph);
dijkstra.solve(from);
return dijkstra.dis[to];
}
template<typename Graph> inline Dijkstra<Graph, true> shortestPathTree(Graph& graph, int from) {
Dijkstra<Graph, true> dijkstra(graph);
dijkstra.solve(from);
return dijkstra;
}
template<typename T> string to_string(const T& v) {
string str;
for (const auto& i : const_cast<T&>(v)) str += to_string(i) + " ";
return str.substr(0, max(0, (int)str.size() - 1));
}
struct Cost : public Ordered<Cost> {
int dist, from;
constexpr Cost() : dist(0), from(-1) {}
constexpr Cost(int dist) : dist(dist), from(-1) {}
constexpr Cost(int dist, int to) : dist(dist), from(to) {}
Cost operator+(const Cost& cost) const {
return Cost(dist + cost.dist, cost.from);
}
bool operator<(const Cost& cost) const {
if (dist != cost.dist) return dist < cost.dist;
return from < cost.from;
}
};
namespace std {
template<> constexpr Cost numeric_limits<Cost>::max() {
return Cost(numeric_limits<int>::max(), numeric_limits<int>::max());
}
}
struct Edge {
typedef Cost CostType;
int from, to;
Cost cost;
Edge(int from, int to) : from(from), to(to), cost(0, from) {};
Edge(int from, int to, int cost) : from(from), to(to), cost(cost, from) {};
};
int main() {
int n, m, s, g;
cin >> n >> m >> s >> g;
AdjacencyList<Edge> graph(n);
for (int i = 0; i < m; ++i) {
int a, b, c;
cin >> a >> b >> c;
graph.addEdge(a, b, c);
graph.addEdge(b, a, c);
}
cout << to_string(shortestPathTree(graph, g).shortestPathTree.getPath(s)) << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1