結果
| 問題 |
No.20 砂漠のオアシス
|
| コンテスト | |
| ユーザー |
not_522
|
| 提出日時 | 2015-08-19 16:54:11 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 41 ms / 5,000 ms |
| コード長 | 7,228 bytes |
| コンパイル時間 | 1,649 ms |
| コンパイル使用メモリ | 181,860 KB |
| 実行使用メモリ | 10,496 KB |
| 最終ジャッジ日時 | 2024-10-13 05:25:05 |
| 合計ジャッジ時間 | 2,545 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
struct Edge {
typedef int CostType;
const static int cost = 1;
int from, to;
Edge(int from, int to) : from(from), to(to) {};
};
template<typename Cost> struct WeightedEdge : public Edge {
typedef Cost CostType;
Cost cost;
WeightedEdge(int from, int to, Cost cost = 0) : Edge(from, to), cost(cost) {}
};
template<typename Capacity> struct ResidualEdge : public Edge {
typedef Capacity CapacityType;
Capacity cap;
int rev;
ResidualEdge(int from, int to, Capacity cap) : Edge(from, to), cap(cap) {}
ResidualEdge reverse() const {return ResidualEdge(to, from, 0);}
};
template<typename Capacity, typename Cost> struct WeightedResidualEdge : public ResidualEdge<Capacity> {
Cost cost;
WeightedResidualEdge(int from, int to, Capacity cap, Cost cost) : ResidualEdge<Capacity>(from, to, cap), cost(cost) {}
WeightedResidualEdge reverse() const {return WeightedResidualEdge(this->to, this->from, 0, -cost);}
};
template<typename Edge> class Graph {
public:
typedef Edge EdgeType;
virtual int size() const = 0;
template<typename... Args> void addEdge(Args...) {}
template<typename... Args> void addUndirectedEdge(Args...) {}
virtual vector<Edge> getEdges() const = 0;
virtual vector<Edge> getEdges(int from) const = 0;
virtual vector<Edge> getEdges(int from, int to) const = 0;
virtual int getDegree(int v) const = 0;
};
template<typename Edge> class AdjacencyList : public Graph<Edge> {
protected:
vector<vector<Edge>> graph;
public:
AdjacencyList(int n) : graph(n) {}
int size() const {
return graph.size();
}
template<typename... Args> void addEdge(Args... args) {
Edge edge(args...);
graph[edge.from].emplace_back(edge);
}
template<typename... Args> void addUndirectedEdge(Args... args) {
Edge edge(args...);
addEdge(edge);
swap(edge.from, edge.to);
addEdge(edge);
}
vector<Edge> getEdges() const {
vector<Edge> res;
for (const auto& edges : graph) {
res.insert(res.end(), edges.begin(), edges.end());
}
return res;
}
vector<Edge> getEdges(int from) const {
return graph[from];
}
vector<Edge> getEdges(int from, int to) const {
vector<Edge> res;
for (const auto& edge : graph[from]) {
if (edge.to == to) res.emplace_back(edge);
}
return res;
}
int getDegree(int v) const {
return graph[v].size();
}
vector<Edge>& operator[](int v) {
return graph[v];
}
};
template<typename Graph, typename State> class Search {
protected:
typedef typename Graph::EdgeType Edge;
const Graph graph;
vector<bool> visited;
virtual void push(const State&) = 0;
virtual State next() = 0;
virtual bool isRunning() = 0;
virtual void visit(const State&) {}
virtual bool canPruning(const State&) {return false;}
public:
Search(const Graph& graph) : graph(graph), visited(graph.size(), false) {}
void solve(int from) {
push(State(from));
while (isRunning()) {
State now = next();
int pos = now.getPos();
if (visited[pos]) continue;
visited[pos] = true;
visit(now);
for (const Edge& edge : graph.getEdges(pos)) {
State nextState = now.next(edge);
if (visited[nextState.getPos()]) continue;
if (canPruning(nextState)) continue;
push(nextState);
}
}
}
bool isReachable(int v) {
return visited[v];
}
};
template<typename Edge> class Tree {
public:
vector<Edge> parent;
vector<vector<int>> children;
vector<int> depth;
Tree() {}
Tree(int n) : children(n), depth(n, -1) {
for (int i = 0; i < n; ++i) parent.emplace_back(i, i);
}
int size() const {
return parent.size();
}
template<typename... Args> void addEdge(Args... args) {
Edge edge(args...);
parent[edge.from] = edge;
if (edge.from != edge.to) children[edge.to].emplace_back(edge.from);
}
int getDepth(int v) {
if (depth[v] != -1) return depth[v];
if (parent[v].to == v) return depth[v] = 0;
return depth[v] = getDepth(parent[v].to) + 1;
}
vector<int> getPath(int v) {
vector<int> res{v};
while (v != parent[v].to) {
v = parent[v].to;
res.emplace_back(v);
}
return res;
}
};
template<typename Edge> struct DijkstraState {
typedef typename Edge::CostType Cost;
Edge edge;
Cost cost;
DijkstraState(int pos) : edge(pos, pos), cost(0) {}
DijkstraState(const Edge& edge, Cost cost) : edge(edge), cost(cost) {}
DijkstraState next(const Edge& edge) const {
return DijkstraState(edge, cost + edge.cost);
}
bool operator<(const DijkstraState& state) const {
return cost > state.cost;
}
int getPos() const {
return edge.to;
}
};
template<typename Graph, bool Restoration = false, typename State = DijkstraState<typename Graph::EdgeType>> class Dijkstra : public Search<Graph, State> {
protected:
typedef typename Graph::EdgeType Edge;
typedef typename Edge::CostType Cost;
const Cost INF = numeric_limits<Cost>::max();
priority_queue<State> que;
void push(const State& state) {
que.push(state);
dis[state.getPos()] = state.cost;
}
State next() {
State now = que.top();
que.pop();
return now;
}
bool isRunning() {
return !que.empty();
}
void visit(const State& state) {
if (Restoration) {
auto e = state.edge;
swap(e.from, e.to);
shortestPathTree.addEdge(e);
}
}
bool canPruning(const State& state) {
return dis[state.getPos()] <= state.cost;
}
public:
vector<Cost> dis;
Tree<Edge> shortestPathTree;
Dijkstra(const Graph& graph) : Search<Graph, State>(graph), dis(graph.size(), INF) {
if (Restoration) shortestPathTree = Tree<Edge>(graph.size());
}
};
template<typename Graph> inline Dijkstra<Graph> shortestPath(Graph& graph, int from) {
Dijkstra<Graph> dijkstra(graph);
dijkstra.solve(from);
return dijkstra;
}
template<typename Graph> inline typename Graph::EdgeType::CostType shortestPath(Graph& graph, int from, int to) {
Dijkstra<Graph> dijkstra(graph);
dijkstra.solve(from);
return dijkstra.dis[to];
}
template<typename Graph> inline Dijkstra<Graph, true> shortestPathTree(Graph& graph, int from) {
Dijkstra<Graph, true> dijkstra(graph);
dijkstra.solve(from);
return dijkstra;
}
int main() {
int n, v, x, y;
cin >> n >> v >> x >> y;
--x, --y;
vector<vector<int>> l(n, vector<int>(n));
for (auto& i : l) {
for (int& j : i) cin >> j;
}
AdjacencyList<WeightedEdge<int>> graph(n * n);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != n - 1) {
graph.addEdge(i * n + j, i * n + j + n, l[i + 1][j]);
graph.addEdge(i * n + j + n, i * n + j, l[i][j]);
}
if (j != n - 1) {
graph.addEdge(i * n + j, i * n + j + 1, l[i][j + 1]);
graph.addEdge(i * n + j + 1, i * n + j, l[i][j]);
}
}
}
if (shortestPath(graph, 0, n * n - 1) < v) {
cout << "YES" << endl;
return 0;
}
if (x == -1 && y == -1) {
cout << "NO" << endl;
return 0;
}
int d1 = shortestPath(graph, 0, y * n + x);
int d2 = shortestPath(graph, y * n + x, n * n - 1);
cout << ((v - d1) * 2 > d2 ? "YES" : "NO") << endl;
}
not_522