結果

問題 No.1006 Share an Integer
ユーザー kyon2326kyon2326
提出日時 2020-03-13 21:25:19
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,827 ms / 2,000 ms
コード長 9,144 bytes
コンパイル時間 1,702 ms
コンパイル使用メモリ 182,120 KB
実行使用メモリ 36,352 KB
最終ジャッジ日時 2024-05-02 07:27:00
合計ジャッジ時間 17,279 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 872 ms
21,720 KB
testcase_12 AC 1,591 ms
34,504 KB
testcase_13 AC 1,673 ms
36,352 KB
testcase_14 AC 1,683 ms
36,200 KB
testcase_15 AC 1,408 ms
31,672 KB
testcase_16 AC 676 ms
17,240 KB
testcase_17 AC 930 ms
22,364 KB
testcase_18 AC 1,434 ms
31,776 KB
testcase_19 AC 1,327 ms
30,536 KB
testcase_20 AC 1,465 ms
32,580 KB
testcase_21 AC 1,827 ms
36,116 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
/*
#ifndef ONLINE_JUDGE
	#include <boost/multiprecision/cpp_int.hpp>
	#include <boost/multiprecision/cpp_dec_float.hpp>
	using bll = boost::multiprecision::cpp_int;
	using bdouble = boost::multiprecision::cpp_dec_float_100;
#endif
*/
#ifdef LOCAL_DEV
	void debug_impl() { std::cerr << '\n'; }
	template<typename Head, typename... Tail> void debug_impl(Head head, Tail... tail) { std::cerr << " " << head << (sizeof...(tail) ? "," : ""); debug_impl(tail...); }
	#define debug(...) do { std::cerr << "(" << #__VA_ARGS__ << ") ="; debug_impl(__VA_ARGS__); } while (false)
#else
	#define debug(...) do {} while (false)
#endif
#ifdef LOCAL_TEST
	#define BOOST_STACKTRACE_USE_ADDR2LINE
	#define BOOST_STACKTRACE_ADDR2LINE_LOCATION /usr/local/opt/binutils/bin/addr2line
	#define _GNU_SOURCE
	#include <boost/stacktrace.hpp>
	namespace std {
		template<typename T> class dvector : public std::vector<T> {
		public:
			dvector() : std::vector<T>() {}
			explicit dvector(size_t n, const T& value = T()) : std::vector<T>(n, value) {}
			dvector(const std::vector<T>& v) : std::vector<T>(v) {}
			dvector(const std::initializer_list<T> il) : std::vector<T>(il) {}
			dvector(const std::string::iterator first, const std::string::iterator last) : std::vector<T>(first, last) {}
			dvector(const typename std::vector<T>::iterator first, const typename std::vector<T>::iterator last) : std::vector<T>(first, last) {}
			dvector(const typename std::vector<T>::reverse_iterator first, const typename std::vector<T>::reverse_iterator last) : std::vector<T>(first, last) {}
			dvector(const typename std::vector<T>::const_iterator first, const typename std::vector<T>::const_iterator last) : std::vector<T>(first, last) {}
			dvector(const typename std::vector<T>::const_reverse_iterator first, const typename std::vector<T>::const_reverse_iterator last) : std::vector<T>(first, last) {}
			T& operator[](size_t n) {
				try { return this->at(n); } catch (const std::exception& e) {
					std::cerr << boost::stacktrace::stacktrace() << '\n'; return this->at(n);
				}
			}
			const T& operator[](size_t n) const {
				try { return this->at(n); } catch (const std::exception& e) {
					std::cerr << boost::stacktrace::stacktrace() << '\n'; return this->at(n);
				}
			}
		};
	}
	class dbool {
	private:
		bool boolvalue;
	public:
		dbool() : boolvalue(false) {}
		dbool(bool b) : boolvalue(b) {}
		dbool(const dbool& b) : boolvalue(b.boolvalue) {}
		operator bool&() { return boolvalue; }
		operator const bool&() const { return boolvalue; }
	};
	template<typename T> std::ostream& operator<<(std::ostream& s, const std::dvector<T>& v) {
		for (size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; }
	template<typename T> std::ostream& operator<<(std::ostream& s, const std::dvector<std::dvector<T>>& vv) {
		s << "\\\n"; for (size_t i = 0; i < vv.size(); ++i){ s << vv[i] << "\n"; } return s; }
	template<typename T> std::ostream& operator<<(std::ostream& s, const std::set<T>& se) {
		s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; }
	template<typename T> std::ostream& operator<<(std::ostream& s, const std::multiset<T>& se) {
		s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; }
	template <typename T, size_t N> std::ostream& operator<<(std::ostream& s, const std::array<T, N>& a) {
		s << "{ "; for (size_t i = 0; i < N; ++i){ s << a[i] << "\t"; } s << "}"; return s; }
	template<typename T1, typename T2> std::ostream& operator<<(std::ostream& s, const std::map<T1, T2>& m) {
		s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; }
	template<typename T1, typename T2> std::ostream& operator<<(std::ostream& s, const std::pair<T1, T2>& p) {
		return s << "(" << p.first << ", " << p.second << ")"; }
	#define vector dvector
	#define bool dbool
	class SIGFPE_exception : std::exception {};
	class SIGSEGV_exception : std::exception {};
	void catch_SIGFPE(int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGFPE_exception(); }
	void catch_SIGSEGV(int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGSEGV_exception(); }
	signed convertedmain();
	signed main() { signal(SIGFPE, catch_SIGFPE); signal(SIGSEGV, catch_SIGSEGV); return convertedmain(); }
	#define main() convertedmain()
#endif
//#define int long long
using ll = long long;
//constexpr int INF = 1e9;//INT_MAX=(1<<31)-1=2147483647
constexpr ll INF = (ll)1e18;//(1LL<<63)-1=9223372036854775807
constexpr ll MOD = (ll)1e9 + 7;
constexpr double EPS = 1e-9;
constexpr ll dx[4] = {1LL, 0LL, -1LL, 0LL};
constexpr ll dy[4] = {0LL, 1LL, 0LL, -1LL};
constexpr ll dx8[8] = {1LL, 0LL, -1LL, 0LL, 1LL, 1LL, -1LL, -1LL};
constexpr ll dy8[8] = {0LL, 1LL, 0LL, -1LL, 1LL, -1LL, 1LL, -1LL};
#define rep(i, n)   for(ll i=0, i##_length=(n); i< i##_length; ++i)
#define repeq(i, n) for(ll i=1, i##_length=(n); i<=i##_length; ++i)
#define rrep(i, n)   for(ll i=(n)-1; i>=0; --i)
#define rrepeq(i, n) for(ll i=(n)  ; i>=1; --i)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
void p() { std::cout << '\n'; }
template<typename Head, typename... Tail> void p(Head head, Tail... tail) { std::cout << head << (sizeof...(tail) ? " " : ""); p(tail...); }
template<typename T> inline void pv(std::vector<T>& v) { for(ll i=0, N=v.size(); i<N; i++) std::cout << v[i] << " \n"[i==N-1]; }
template<typename T> inline T gcd(T a, T b) { return b ? gcd(b,a%b) : a; }
template<typename T> inline T lcm(T a, T b) { return a / gcd(a,  b) * b; }
template<typename T> inline bool chmax(T& a, T b) { return a < b && (a = b, true); }
template<typename T> inline bool chmin(T& a, T b) { return a > b && (a = b, true); }
template<typename T> inline void uniq(std::vector<T>& v) { v.erase(std::unique(v.begin(), v.end()), v.end()); }

/*-----8<-----template-----8<-----*/

//MAXVAL以下の素数を求める + MAXVAL以下の整数を素因数分解
//[1-1e7]くらいの範囲で素因数分解をまとめて行いたい場合にお得
class Eratosthenes {
public:
	//primes[i] : i番目の素数
	vector<ll> primes;
	//isprime[i] = true:素数, false:合成数
	vector<bool> isprime;
	//min_factor[i] : iに含まれる最小の素因数
	vector<ll> min_factor;
private:
	inline void upflag(int *flags, int BITS, int i) {
		flags[i / BITS] |= 1 << (i % BITS);
	}
	inline int getflag(int *flags, int BITS, int i) {
		return (flags[i / BITS] >> (i % BITS)) & 1;
	}
	inline void setprime(int x) {
		primes.push_back(x);
		isprime[x] = true;
		min_factor[x] = x;
	}
	inline void setcomposite(int x, int factorval) {
		if(min_factor[x] == -1) min_factor[x] = factorval;
	}
	template<typename T1, typename T2> inline T1 power(T1 x, T2 n) {
		return n ? power(x*x,n/2)*(n%2?x:1) : 1;
	}
public:
	Eratosthenes(ll MAXVAL) : primes(), isprime(MAXVAL+1, false), min_factor(MAXVAL+1, -1) {
		int BITS = (sizeof(int) * 8);
		int FLAGS_NUM = (MAXVAL / BITS + 1);
		int flags[FLAGS_NUM] = {};
		int i, j, f, s;
		int max = (int)sqrt(MAXVAL) + 1;
		setcomposite(0,0);if(MAXVAL<=0)return;
		setcomposite(1,1);if(MAXVAL<=1)return;
		setprime(2);if(MAXVAL<=2)return;
		setprime(3);if(MAXVAL<=3)return;
		for (i = 4; i<=MAXVAL; i+=2) setcomposite(i,2);
		for (i = 9; i<=MAXVAL; i+=6) setcomposite(i,3);
		for (i = 5, f = 4; i <= max; i += (f = 6 - f)) {
			if (!getflag(flags,BITS,i)) {
				setprime(i);
				s = MAXVAL / i;
				for (j = s - !(s & 1); j >= i; j -= 2) {
					if (!getflag(flags,BITS,i)){
						upflag(flags,BITS,i*j);
						setcomposite(i*j,i);
					}
				}
			}
		}
		for (; i <= MAXVAL; i += (f = 6 - f)){
			if (!getflag(flags,BITS,i)){
				setprime(i);
			}
		}
	}

	// n を素因数分解する
	map<ll,ll> prime_factorize(ll n) {
		map<ll,ll> res;
		while (n != 1) {
			ll prime = min_factor[n];
			ll exp = 0;
			while (min_factor[n] == prime) {
				++exp;
				n /= prime;
			}
			res[prime]=exp;
		}
		return res;
	}

	//nの約数を返す ソートされていないので必要に応じてsort(all(div));してください
	//約数の個数だけが知りたい場合は素因数分解の結果から計算してください
	vector<ll> divisor(ll n){
		vector<ll> res;
		map<ll,ll> m=prime_factorize(n);
		ll N=m.size();
		vector<ll> bitlen(N+1);
		ll i=0;
		for(pair<ll,ll> pr:m){
			bitlen[i]=pr.second+1;
			i++;
		}
		vector<ll> bit(N+1, 0);
		while(!bit[N]){
			ll t=1,i=0;
			for(pair<ll,ll> pr:m){
				t*=power(pr.first,bit[i]);
				i++;
			}
			res.push_back(t);
			for(ll i=0; ++bit[i]==bitlen[i]; i++)bit[i]=0;
		}
		return res;
	}
};
/*-----8<-----library-----8<-----*/

void solve() {
	ll N;
	cin>>N;
	Eratosthenes er(N);

	vector<ll> v(N+1,-1);
	repeq(i,N){
		vector<ll> a=er.divisor(i);
		v[i]=a.size();
	}

	ll minval=INF;
	repeq(i,N-1){
		ll t=i-v[i];
		ll s=(N-i)-v[N-i];
		chmin(minval,abs(t-s));
	}

	repeq(i,N-1){
		ll t=i-v[i];
		ll s=(N-i)-v[N-i];
		if(minval==(ll)abs(t-s)){
			p(i,N-i);
		}
	}
	
}

signed main() {
	solve();
	return 0;
}
0