結果
問題 | No.1011 Infinite Stairs |
ユーザー | polylogK |
提出日時 | 2020-03-15 10:30:34 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,754 bytes |
コンパイル時間 | 1,415 ms |
コンパイル使用メモリ | 167,156 KB |
実行使用メモリ | 13,632 KB |
最終ジャッジ日時 | 2024-11-24 15:50:29 |
合計ジャッジ時間 | 20,787 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,632 KB |
testcase_01 | AC | 2 ms
11,172 KB |
testcase_02 | AC | 6 ms
13,632 KB |
testcase_03 | TLE | - |
testcase_04 | AC | 935 ms
10,792 KB |
testcase_05 | TLE | - |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 29 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 26 ms
6,816 KB |
testcase_11 | AC | 592 ms
6,820 KB |
testcase_12 | AC | 10 ms
6,820 KB |
testcase_13 | AC | 642 ms
6,816 KB |
testcase_14 | AC | 3 ms
6,820 KB |
testcase_15 | AC | 261 ms
6,816 KB |
testcase_16 | TLE | - |
testcase_17 | AC | 270 ms
6,816 KB |
testcase_18 | AC | 1,399 ms
6,816 KB |
testcase_19 | AC | 6 ms
6,820 KB |
testcase_20 | AC | 11 ms
6,816 KB |
testcase_21 | AC | 728 ms
6,816 KB |
testcase_22 | AC | 1,794 ms
6,816 KB |
testcase_23 | AC | 1,016 ms
6,820 KB |
testcase_24 | AC | 617 ms
6,816 KB |
testcase_25 | AC | 912 ms
6,816 KB |
testcase_26 | AC | 298 ms
10,916 KB |
ソースコード
#pragma GCC optimization ("unroll-loops") #include <bits/stdc++.h> using namespace std::literals::string_literals; using i64 = std::int_fast64_t; using std::cout; using std::endl; using std::cin; template<typename T> std::vector<T> make_v(size_t a){return std::vector<T>(a);} template<typename T,typename... Ts> auto make_v(size_t a,Ts... ts){ return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...)); } #include <iostream> template <std::uint_fast64_t Modulus> class modint { using u32 = std::uint_fast32_t; using u64 = std::uint_fast64_t; using i64 = std::int_fast64_t; inline u64 apply(i64 x) { return (x >= 0 ? x : x + Modulus); }; public: u64 a; static constexpr u64 mod = Modulus; constexpr modint(const u64 & x = 0) noexcept : a(x % Modulus) {} constexpr u64 &value() noexcept { return a; } constexpr const u64 &value() const noexcept { return a; } const modint inverse() const { return modint(1) / *this; } const modint pow(i64 k) const { return modint(*this) ^ k; } constexpr modint & operator+=(const modint & rhs) noexcept { a += rhs.a; if (a >= Modulus) a -= Modulus; return *this; } constexpr modint & operator-=(const modint & rhs) noexcept { if (a < rhs.a) a += Modulus; a -= rhs.a; return *this; } constexpr modint & operator*=(const modint & rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint & operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) (*this) *= rhs; rhs *= rhs; exp /= 2; } return *this; } constexpr modint & operator^=(u64 k) noexcept { auto b = modint(1); while(k) { if(k & 1) b = b * (*this); (*this) *= (*this); k >>= 1; } return (*this) = b; } constexpr modint & operator=(const modint & rhs) noexcept { a = rhs.a; return (*this); } constexpr modint operator+(const modint & rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint & rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint & rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint & rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint operator^(const u64 & k) const noexcept { return modint(*this) ^= k; } constexpr modint operator-() const noexcept { return modint(Modulus - a); } constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; } constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; } const bool operator==(const modint & rhs) const noexcept { return a == rhs.a; }; const bool operator!=(const modint & rhs) const noexcept { return a != rhs.a; }; const bool operator<=(const modint & rhs) const noexcept { return a <= rhs.a; }; const bool operator>=(const modint & rhs) const noexcept { return a >= rhs.a; }; const bool operator<(const modint & rhs) const noexcept { return a < rhs.a; }; const bool operator>(const modint & rhs) const noexcept { return a > rhs.a; }; explicit operator bool() const { return a; } explicit operator u32() const { return a; } friend std::ostream & operator<<(std::ostream & os, const modint & p) { return os << p.a; } friend std::istream & operator>>(std::istream & is, modint & p) { u64 t; is >> t; p = modint(t); return is; } }; using mint = modint<(int)(1e9 + 7)>; int main() { int n, d, k; scanf("%d%d%d", &n, &d, &k); mint dp[2][k + 1] = {}; dp[0][0] = 1; for(int l = 0; l < n; l++) { int from = l % 2; int to = 1 - l % 2; std::fill(dp[to], dp[to] + k + 1, 0); for(int i = 0; i < k; i++) for(int j = 1; j <= d and i + j <= k; j++) dp[to][i + j] += dp[from][i]; } printf("%llu\n", dp[n % 2][k].value()); return 0; }