結果

問題 No.1011 Infinite Stairs
ユーザー polylogKpolylogK
提出日時 2020-03-15 10:30:34
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 3,754 bytes
コンパイル時間 1,415 ms
コンパイル使用メモリ 167,156 KB
実行使用メモリ 13,632 KB
最終ジャッジ日時 2024-11-24 15:50:29
合計ジャッジ時間 20,787 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,632 KB
testcase_01 AC 2 ms
11,172 KB
testcase_02 AC 6 ms
13,632 KB
testcase_03 TLE -
testcase_04 AC 935 ms
10,792 KB
testcase_05 TLE -
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 29 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 26 ms
6,816 KB
testcase_11 AC 592 ms
6,820 KB
testcase_12 AC 10 ms
6,820 KB
testcase_13 AC 642 ms
6,816 KB
testcase_14 AC 3 ms
6,820 KB
testcase_15 AC 261 ms
6,816 KB
testcase_16 TLE -
testcase_17 AC 270 ms
6,816 KB
testcase_18 AC 1,399 ms
6,816 KB
testcase_19 AC 6 ms
6,820 KB
testcase_20 AC 11 ms
6,816 KB
testcase_21 AC 728 ms
6,816 KB
testcase_22 AC 1,794 ms
6,816 KB
testcase_23 AC 1,016 ms
6,820 KB
testcase_24 AC 617 ms
6,816 KB
testcase_25 AC 912 ms
6,816 KB
testcase_26 AC 298 ms
10,916 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimization ("unroll-loops")

#include <bits/stdc++.h>
using namespace std::literals::string_literals;
using i64 = std::int_fast64_t;
using std::cout;
using std::endl;
using std::cin;

template<typename T>
std::vector<T> make_v(size_t a){return std::vector<T>(a);}

template<typename T,typename... Ts>
auto make_v(size_t a,Ts... ts){
  return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));
}

#include <iostream>

template <std::uint_fast64_t Modulus>
class modint {
	using u32 = std::uint_fast32_t;
	using u64 = std::uint_fast64_t;
	using i64 = std::int_fast64_t;

	inline u64 apply(i64 x) { return (x >= 0 ? x : x + Modulus); };

public:
	u64 a;
	static constexpr u64 mod = Modulus;

	constexpr modint(const u64 & x = 0) noexcept : a(x % Modulus) {}

	constexpr u64 &value() noexcept { return a; }
	constexpr const u64 &value() const noexcept { return a; }

	const modint inverse() const {
		return modint(1) / *this;
	}
	const modint pow(i64 k) const {
		return modint(*this) ^ k;
	}

	constexpr modint & operator+=(const modint & rhs) noexcept {
		a += rhs.a;
		if (a >= Modulus) a -= Modulus;
		return *this;
	}
	constexpr modint & operator-=(const modint & rhs) noexcept {
		if (a < rhs.a) a += Modulus;
		a -= rhs.a;
		return *this;
	}
	constexpr modint & operator*=(const modint & rhs) noexcept {
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint & operator/=(modint rhs) noexcept {
		u64 exp = Modulus - 2;
		while (exp) {
			if (exp % 2) (*this) *= rhs;
			
			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
	constexpr modint & operator^=(u64 k) noexcept {
		auto b = modint(1);
		while(k) {
			if(k & 1) b = b * (*this);
			(*this) *= (*this);
			k >>= 1;
		}
		return (*this) = b;
	}
	constexpr modint & operator=(const modint & rhs) noexcept {
		a = rhs.a;
		return (*this);
	}
	constexpr modint operator+(const modint & rhs) const noexcept { return modint(*this) += rhs; }
	constexpr modint operator-(const modint & rhs) const noexcept { return modint(*this) -= rhs; }	
	constexpr modint operator*(const modint & rhs) const noexcept { return modint(*this) *= rhs; }
	constexpr modint operator/(const modint & rhs) const noexcept { return modint(*this) /= rhs; }
	constexpr modint operator^(const u64 & k) const noexcept { return modint(*this) ^= k; }
	constexpr modint operator-() const noexcept { return modint(Modulus - a); }
	constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
	constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
	const bool operator==(const modint & rhs) const noexcept { return a == rhs.a; };
	const bool operator!=(const modint & rhs) const noexcept { return a != rhs.a; };
	const bool operator<=(const modint & rhs) const noexcept { return a <= rhs.a; };
	const bool operator>=(const modint & rhs) const noexcept { return a >= rhs.a; };
	const bool operator<(const modint & rhs) const noexcept { return a < rhs.a; };
	const bool operator>(const modint & rhs) const noexcept { return a > rhs.a; };
	explicit operator bool() const { return a; }
	explicit operator u32() const { return a; }

	friend std::ostream & operator<<(std::ostream & os, const modint & p) {
		return os << p.a;
	}
	friend std::istream & operator>>(std::istream & is, modint & p) {
		u64 t;
		is >> t;
		p = modint(t);
		return is;
	}
};
using mint = modint<(int)(1e9 + 7)>;

int main() {
	int n, d, k; scanf("%d%d%d", &n, &d, &k);

	mint dp[2][k + 1] = {}; dp[0][0] = 1;
	for(int l = 0; l < n; l++) {
		int from = l % 2;
		int to = 1 - l % 2;

		std::fill(dp[to], dp[to] + k + 1, 0);
		for(int i = 0; i < k; i++)
			for(int j = 1; j <= d and i + j <= k; j++) dp[to][i + j] += dp[from][i];
	}
	
	printf("%llu\n", dp[n % 2][k].value());
	return 0;
}
0