結果
| 問題 |
No.1011 Infinite Stairs
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-03-20 03:18:58 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,235 ms / 2,000 ms |
| コード長 | 14,576 bytes |
| コンパイル時間 | 2,495 ms |
| コンパイル使用メモリ | 117,848 KB |
| 実行使用メモリ | 43,652 KB |
| 最終ジャッジ日時 | 2024-07-17 11:44:01 |
| 合計ジャッジ時間 | 8,644 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 24 |
ソースコード
#include <iostream>
template <std::uint_fast64_t Modulus>
class modint {
using u32 = std::uint_fast32_t;
using u64 = std::uint_fast64_t;
using i64 = std::int_fast64_t;
inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };
public:
u64 a;
static constexpr u64 mod = Modulus;
constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}
constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }
constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
constexpr modint operator-() const noexcept { return modint(Modulus - a); }
constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
constexpr modint& operator+=(const modint& rhs) noexcept {
a += rhs.a;
if (a >= Modulus) a -= Modulus;
return *this;
}
constexpr modint& operator-=(const modint& rhs) noexcept {
if (a < rhs.a) a += Modulus;
a -= rhs.a;
return *this;
}
constexpr modint& operator*=(const modint& rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint& operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) (*this) *= rhs;
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr modint& operator^=(u64 k) noexcept {
auto b = modint(1);
while(k) {
if(k & 1) b = b * (*this);
(*this) *= (*this);
k >>= 1;
}
return (*this) = b;
}
constexpr modint& operator=(const modint& rhs) noexcept {
a = rhs.a;
return (*this);
}
constexpr u64& value() noexcept { return a; }
constexpr const u64& value() const noexcept { return a; }
explicit operator bool() const { return a; }
explicit operator u32() const { return a; }
const modint inverse() const {
return modint(1) / *this;
}
const modint pow(i64 k) const {
return modint(*this) ^ k;
}
friend std::ostream& operator<<(std::ostream& os, const modint& p) {
return os << p.a;
}
friend std::istream& operator>>(std::istream& is, modint& p) {
u64 t;
is >> t;
p = modint(t);
return is;
}
};
#include <cstdint>
#include <vector>
template<class T>
class polynomial: public std::vector<T> {
public:
using std::vector<T>::vector;
using value_type = typename std::vector<T>::value_type;
using reference = typename std::vector<T>::reference;
using const_reference = typename std::vector<T>::const_reference;
using size_type = typename std::vector<T>::size_type;
private:
T eval(T x) const {
T ret = (*this)[0], tmp = x;
for(int i = 1; i < this->size(); i++) {
ret = ret + (*this)[i] * tmp;
tmp = tmp * x;
}
return ret;
}
public:
polynomial(): std::vector<T>(1, T{}) {}
polynomial(const std::vector<T>& p): std::vector<T>(p) {}
polynomial operator+(const polynomial& r) const { return polynomial(*this) += r; }
polynomial operator-(const polynomial& r) const { return polynomial(*this) -= r; }
polynomial operator*(const_reference r) const { return polynomial(*this) *= r; }
polynomial operator/(const_reference r) const { return polynomial(*this) /= r; }
polynomial operator<<(size_type r) const { return polynomial(*this) <<= r; }
polynomial operator>>(size_type r) const { return polynomial(*this) >>= r; }
polynomial operator-() const {
polynomial ret(this->size());
for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
polynomial& operator+=(const polynomial& r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] = (*this)[i] + r[i];
return *this;
}
polynomial& operator-=(const polynomial& r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < r.size(); i++) (*this)[i] = (*this)[i] - r[i];
return *this;
}
polynomial& operator*=(const_reference r) {
for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] * r;
return *this;
}
polynomial& operator/=(const_reference r) {
for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] / r;
return *this;
}
polynomial& operator<<=(size_type r) {
this->insert(begin(*this), r, T{});
return *this;
}
polynomial& operator>>=(size_type r) {
if(r >= this->size()) clear();
else this->erase(begin(*this), begin(*this) + r);
return *this;
}
polynomial differential(size_type k) const {
polynomial ret(*this);
for(int i = 0; i < k; i++) ret = ret.differential();
return ret;
}
polynomial differential() const {
if(degree() < 1) return polynomial();
polynomial ret(this->size() - 1);
for(int i = 1; i < this->size(); i++) ret[i - 1] = (*this)[i] * T{i};
return ret;
}
polynomial integral(size_type k) const {
polynomial ret(*this);
for(int i = 0; i < k; i++) ret = ret.integral();
return ret;
}
polynomial integral() const {
polynomial ret(this->size() + 1);
for(int i = 0; i < this->size(); i++) ret[i + 1] = (*this)[i] / T{i + 1};
return ret;
}
polynomial prefix(size_type size) const {
if(size == 0) return polynomial();
return polynomial(begin(*this), begin(*this) + std::min(this->size(), size));
}
void shrink() {
while(this->size() > 1 and this->back() == T{}) this->pop_back();
}
T operator()(T x) const { return eval(x); }
size_type degree() const { return this->size() - 1; }
void clear() { this->assign(1, T{}); }
};
template<class T, int primitive_root = 3>
class number_theoritic_transform: public polynomial<T> {
public:
using polynomial<T>::polynomial;
using value_type = typename polynomial<T>::value_type;
using reference = typename polynomial<T>::reference;
using const_reference = typename polynomial<T>::const_reference;
using size_type = typename polynomial<T>::size_type;
private:
void ntt(number_theoritic_transform& a) const {
int N = a.size();
static std::vector<T> dw;
if(dw.size() < N) {
int n = dw.size();
dw.resize(N);
for(int i = n; i < N; i++) dw[i] = -(T(primitive_root) ^ ((T::mod - 1) >> i + 2));
}
for(int m = N; m >>= 1;) {
T w = 1;
for(int s = 0, k = 0; s < N; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; i++, j++) {
T x = a[i], y = a[j] * w;
a[i] = x + y;
a[j] = x - y;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
void intt(number_theoritic_transform& a) const {
int N = a.size();
static std::vector<T> idw;
if(idw.size() < N) {
int n = idw.size();
idw.resize(N);
for(int i = n; i < N; i++) idw[i] = (-(T(primitive_root) ^ ((T::mod - 1) >> i + 2))).inverse();
}
for(int m = 1; m < N; m *= 2) {
T w = 1;
for(int s = 0, k = 0; s < N; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; i++, j++) {
T x = a[i], y = a[j];
a[i] = x + y;
a[j] = (x - y) * w;
}
w *= idw[__builtin_ctz(++k)];
}
}
}
void transform(number_theoritic_transform& a, bool inverse = false) const {
size_type n = 0;
while((1 << n) < a.size()) n++;
size_type N = 1 << n;
a.resize(N);
if(!inverse) {
ntt(a);
} else {
intt(a);
T inv = T(N).inverse();
for(int i = 0; i < a.size(); i++) a[i] *= inv;
}
}
number_theoritic_transform convolution(const number_theoritic_transform& ar, const number_theoritic_transform& br) const {
size_type size = ar.degree() + br.degree() + 1;
number_theoritic_transform a(ar), b(br);
a.resize(size);
b.resize(size);
transform(a, false);
transform(b, false);
for(int i = 0; i < a.size(); i++) a[i] *= b[i];
transform(a, true);
a.resize(size);
return a;
}
public:
number_theoritic_transform(const polynomial<T>& p): polynomial<T>(p) {}
number_theoritic_transform operator*(const_reference r) const { return number_theoritic_transform(*this) *= r; }
number_theoritic_transform& operator*=(const_reference r) {
for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] * r;
return *this;
}
number_theoritic_transform operator*(const number_theoritic_transform& r) const { return number_theoritic_transform(*this) *= r; }
number_theoritic_transform& operator*=(const number_theoritic_transform& r) {
return (*this) = convolution((*this), r);
}
};
namespace amnttlib {
using u64 = std::uint_fast64_t;
// https://lumakernel.github.io/ecasdqina/math/FFT/NTT
constexpr u64 ntt_primes[][2] = {
{1224736769, 3}, // 2^24 * 73 + 1,
{1053818881, 7}, // 2^20 * 3 * 5 * 67 + 1
{1051721729, 6}, // 2^20 * 17 * 59 + 1
{1045430273, 3}, // 2^20 * 997 + 1
{1012924417, 5}, // 2^21 * 3 * 7 * 23 + 1
{1007681537, 3}, // 2^20 * 31^2 + 1
{1004535809, 3}, // 2^21 * 479 + 1
{998244353, 3}, // 2^23 * 7 * 17 + 1
{985661441, 3}, // 2^22 * 5 * 47 + 1
{976224257, 3}, // 2^20 * 7^2 * 19 + 1
{975175681, 17}, // 2^21 * 3 * 5 * 31 + 1
{962592769, 7}, // 2^21 * 3^3 * 17 + 1
{950009857, 7}, // 2^21 * 4 * 151 + 1
{943718401, 7}, // 2^22 * 3^2 * 5^2 + 1
{935329793, 3}, // 2^22 * 223 + 1
{924844033, 5}, // 2^21 * 3^2 * 7^2 + 1
{469762049, 3}, // 2^26 * 7 + 1
{167772161, 3}, // 2^25 * 5 + 1
};
};
template<class T,
amnttlib::u64 MOD_1 = amnttlib::ntt_primes[0][0],
amnttlib::u64 PRR_1 = amnttlib::ntt_primes[0][1],
amnttlib::u64 MOD_2 = amnttlib::ntt_primes[2][0],
amnttlib::u64 PRR_2 = amnttlib::ntt_primes[2][1],
amnttlib::u64 MOD_3 = amnttlib::ntt_primes[3][0],
amnttlib::u64 PRR_3 = amnttlib::ntt_primes[3][1]
> class arbitary_mod_number_theoritic_transform: public polynomial<T> {
public:
using polynomial<T>::polynomial;
using value_type = typename polynomial<T>::value_type;
using reference = typename polynomial<T>::reference;
using const_reference = typename polynomial<T>::const_reference;
using size_type = typename polynomial<T>::size_type;
using amntt = arbitary_mod_number_theoritic_transform;
using m1 = modint<MOD_1>;
using m2 = modint<MOD_2>;
using m3 = modint<MOD_3>;
private:
amntt convolution(const amntt& ar, const amntt& br) {
number_theoritic_transform<m1, PRR_1> ntt1_a(ar.size()), ntt1_b(br.size());
number_theoritic_transform<m2, PRR_2> ntt2_a(ar.size()), ntt2_b(br.size());
number_theoritic_transform<m3, PRR_3> ntt3_a(ar.size()), ntt3_b(br.size());
for(int i = 0; i < ar.size(); i++) {
ntt1_a[i] = m1(ar[i].value());
ntt2_a[i] = m2(ar[i].value());
ntt3_a[i] = m3(ar[i].value());
}
for(int i = 0; i < br.size(); i++) {
ntt1_b[i] = m1(br[i].value());
ntt2_b[i] = m2(br[i].value());
ntt3_b[i] = m3(br[i].value());
}
auto x = ntt1_a * ntt1_b;
auto y = ntt2_a * ntt2_b;
auto z = ntt3_a * ntt3_b;
amntt ret(x.size());
const m2 m1_inv_m2 = m2(MOD_1).inverse();
const m3 m12_inv_m3 = (m3(MOD_1) * m3(MOD_2)).inverse();
const T m12 = T(MOD_1) * T(MOD_2);
for(int i = 0; i < ret.size(); i++) {
m2 v1 = (m2(y[i].value()) - m2(x[i].value())) * m1_inv_m2;
m3 v2 = (m3(z[i].value()) - (m3(x[i].value()) + m3(MOD_1) * m3(v1.value()))) * m12_inv_m3;
ret[i] = (T(x[i].value()) + T(MOD_1) * T(v1.value()) + m12 * T(v2.value()));
}
ret.resize(ar.degree() + br.degree() + 1);
return ret;
}
public:
arbitary_mod_number_theoritic_transform(const polynomial<T>& p): polynomial<T>(p) {}
amntt operator*(const_reference r) const { return amntt(*this) *= r; }
amntt& operator*=(const_reference r) {
for(int i = 0; i < this->size(); i++) (*this)[i] = (*this)[i] * r;
return *this;
}
amntt operator*(const amntt& r) const { return amntt(*this) *= r; }
amntt& operator*=(const amntt& r) {
return (*this) = convolution((*this), r);
}
};
#include <cassert>
#include <utility>
template<class T>
class formal_power_series: public T {
public:
using T::T;
using value_type = typename T::value_type;
using reference = typename T::reference;
using const_reference = typename T::const_reference;
using size_type = typename T::size_type;
private:
formal_power_series(): T(1) {}
formal_power_series(const T& p): T(p) {}
public:
formal_power_series inverse() const {
assert((*this)[0] != value_type{});
formal_power_series ret(1, (*this)[0].inverse());
for(int i = 1; i < this->size(); i <<= 1) {
auto tmp = ret * this->prefix(i << 1);
for(int j = 0; j < i; j++) {
tmp[j] = value_type{};
if(j + i < tmp.size()) tmp[j + i] *= value_type(-1);
}
tmp = tmp * ret;
for(int j = 0; j < i; j++) tmp[j] = ret[j];
ret = std::move(tmp).prefix(i << 1);
}
return ret.prefix(this->size());
}
formal_power_series log() const {
assert((*this)[0] == value_type(1));
return (formal_power_series(this->differential()) * this->inverse()).integral().prefix(this->size());
}
formal_power_series exp() const {
assert((*this)[0] == value_type{});
formal_power_series f(1, value_type(1)), g(1, value_type(1));
for(int i = 1; i < this->size(); i <<= 1) {
g = (g * value_type(2) - f * g * g).prefix(i);
formal_power_series q = this->differential().prefix(i - 1);
formal_power_series w = (q + g * (f.differential() - f * q)).prefix((i << 1) - 1);
f = (f + f * (*this - w.integral()).prefix(i << 1)).prefix(i << 1);
}
return f.prefix(this->size());
}
formal_power_series pow(size_type k) const {
for(size_type i = 0; i < this->size(); i++) {
if((*this)[i] != value_type{}) {
value_type inv = (*this)[i].inverse();
formal_power_series f(*this * inv);
formal_power_series g(f >> i);
g = formal_power_series(g.log() * value_type(k)).exp() * (*this)[i].pow(k);
if(i * k > this->size()) return formal_power_series(this->size());
return (g << (i * k)).prefix(this->size());
}
}
return *this;
}
};
using fps = formal_power_series<arbitary_mod_number_theoritic_transform<modint<(int)(1e9 + 7)>>>;
int main() {
int n, d, k; scanf("%d%d%d", &n, &d, &k);
fps p(k + 1);
for(int i = 1; i <= std::min(d, k); i++) p[i] = 1;
printf("%d\n", p.pow(n)[k]);
return 0;
}