結果
問題 | No.1011 Infinite Stairs |
ユーザー | hitonanode |
提出日時 | 2020-03-20 21:27:48 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 18,902 bytes |
コンパイル時間 | 2,943 ms |
コンパイル使用メモリ | 213,680 KB |
実行使用メモリ | 18,196 KB |
最終ジャッジ日時 | 2024-12-15 03:51:00 |
合計ジャッジ時間 | 17,854 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,632 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 44 ms
6,816 KB |
testcase_03 | AC | 1,717 ms
9,008 KB |
testcase_04 | AC | 372 ms
6,820 KB |
testcase_05 | TLE | - |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 42 ms
6,816 KB |
testcase_08 | AC | 4 ms
6,820 KB |
testcase_09 | AC | 9 ms
6,816 KB |
testcase_10 | AC | 41 ms
6,816 KB |
testcase_11 | AC | 373 ms
6,820 KB |
testcase_12 | AC | 42 ms
6,820 KB |
testcase_13 | AC | 373 ms
6,816 KB |
testcase_14 | AC | 12 ms
6,820 KB |
testcase_15 | AC | 378 ms
6,820 KB |
testcase_16 | AC | 1,629 ms
8,384 KB |
testcase_17 | AC | 87 ms
6,820 KB |
testcase_18 | AC | 1,651 ms
8,464 KB |
testcase_19 | AC | 49 ms
6,820 KB |
testcase_20 | AC | 20 ms
6,816 KB |
testcase_21 | AC | 780 ms
6,824 KB |
testcase_22 | AC | 786 ms
6,816 KB |
testcase_23 | AC | 777 ms
6,816 KB |
testcase_24 | AC | 779 ms
6,816 KB |
testcase_25 | AC | 790 ms
6,820 KB |
testcase_26 | AC | 378 ms
18,196 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long int; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); } template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; /* #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/tag_and_trait.hpp> using namespace __gnu_pbds; // find_by_order(), order_of_key() template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>; template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>; */ template <int mod> struct ModInt { using lint = long long; static int get_mod() { return mod; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&](){ std::set<int> fac; int v = mod - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < mod; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).power((mod - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val; constexpr ModInt() : val(0) {} constexpr ModInt &_setval(lint v) { val = (v >= mod ? v - mod : v); return *this; } constexpr ModInt(lint v) { _setval(v % mod + mod); } explicit operator bool() const { return val != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val + x.val); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val - x.val + mod); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val * x.val % mod); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val * x.inv() % mod); } constexpr ModInt operator-() const { return ModInt()._setval(mod - val); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt()._setval(a % mod + x.val); } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt()._setval(a % mod - x.val + mod); } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.val % mod); } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt()._setval(a % mod * x.inv() % mod); } constexpr bool operator==(const ModInt &x) const { return val == x.val; } constexpr bool operator!=(const ModInt &x) const { return val != x.val; } bool operator<(const ModInt &x) const { return val < x.val; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; is >> t; x = ModInt(t); return is; } friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { os << x.val; return os; } constexpr lint power(lint n) const { lint ans = 1, tmp = this->val; while (n) { if (n & 1) ans = ans * tmp % mod; tmp = tmp * tmp % mod; n /= 2; } return ans; } constexpr lint inv() const { return this->power(mod - 2); } constexpr ModInt operator^(lint n) const { return ModInt(this->power(n)); } constexpr ModInt &operator^=(lint n) { return *this = *this ^ n; } inline ModInt fac() const { static std::vector<ModInt> facs; int l0 = facs.size(); if (l0 > this->val) return facs[this->val]; facs.resize(this->val + 1); for (int i = l0; i <= this->val; i++) facs[i] = (i == 0 ? ModInt(1) : facs[i - 1] * ModInt(i)); return facs[this->val]; } ModInt doublefac() const { lint k = (this->val + 1) / 2; if (this->val & 1) return ModInt(k * 2).fac() / ModInt(2).power(k) / ModInt(k).fac(); else return ModInt(k).fac() * ModInt(2).power(k); } ModInt nCr(const ModInt &r) const { if (this->val < r.val) return ModInt(0); return this->fac() / ((*this - r).fac() * r.fac()); } ModInt sqrt() const { if (val == 0) return 0; if (mod == 2) return val; if (power((mod - 1) / 2) != 1) return 0; ModInt b = 1; while (b.power((mod - 1) / 2) == 1) b += 1; int e = 0, m = mod - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = power((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.power(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.power(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val, mod - x.val)); } }; // Integer convolution for arbitrary mod // with NTT (and Garner's algorithm) for ModInt / ModIntRuntime class. // We skip Garner's algorithm if `skip_garner` is true or mod is in `nttprimes`. // input: a (size: n), b (size: m) // return: vector (size: n + m - 1) template <typename MODINT> vector<MODINT> nttconv(vector<MODINT> a, vector<MODINT> b, bool skip_garner = false); constexpr int nttprimes[3] = {998244353, 167772161, 469762049}; // Integer FFT (Fast Fourier Transform) for ModInt class // (Also known as Number Theoretic Transform, NTT) // is_inverse: inverse transform // ** Input size must be 2^n ** template <typename MODINT> void ntt(vector<MODINT> &a, bool is_inverse = false) { int n = a.size(); assert(__builtin_popcount(n) == 1); MODINT h = MODINT(MODINT::get_primitive_root()).power((MODINT::get_mod() - 1) / n); if (is_inverse) h = 1 / h; int i = 0; for (int j = 1; j < n - 1; j++) { for (int k = n >> 1; k > (i ^= k); k >>= 1); if (j < i) swap(a[i], a[j]); } for (int m = 1; m < n; m *= 2) { int m2 = 2 * m; long long int base = h.power(n / m2); MODINT w(1); for(int x = 0; x < m; x++) { for (int s = x; s < n; s += m2) { MODINT u = a[s], d = a[s + m] * w; a[s] = u + d, a[s + m] = u - d; } w *= base; } } if (is_inverse) { long long int n_inv = MODINT(n).inv(); for (auto &v : a) v *= n_inv; } } template<int MOD> vector<ModInt<MOD>> nttconv_(const vector<int> &a, const vector<int> &b) { int sz = a.size(); assert(a.size() == b.size() and __builtin_popcount(sz) == 1); vector<ModInt<MOD>> ap(sz), bp(sz); for (int i = 0; i < sz; i++) ap[i] = a[i], bp[i] = b[i]; if (a == b) { ntt(ap, false); bp = ap; } else { ntt(ap, false); ntt(bp, false); } for (int i = 0; i < sz; i++) ap[i] *= bp[i]; ntt(ap, true); return ap; } long long int extgcd_ntt_(long long int a, long long int b, long long int &x, long long int &y) { long long int d = a; if (b != 0) d = extgcd_ntt_(b, a % b, y, x), y -= (a / b) * x; else x = 1, y = 0; return d; } long long int modinv_ntt_(long long int a, long long int m) { long long int x, y; extgcd_ntt_(a, m, x, y); return (m + x % m) % m; } long long int garner_ntt_(int r0, int r1, int r2, int mod) { array<long long int, 4> rs = {r0, r1, r2, 0}; vector<long long int> coffs(4, 1), constants(4, 0); for (int i = 0; i < 3; i++) { long long int v = (rs[i] - constants[i]) * modinv_ntt_(coffs[i], nttprimes[i]) % nttprimes[i]; if (v < 0) v += nttprimes[i]; for (int j = i + 1; j < 4; j++) { (constants[j] += coffs[j] * v) %= (j < 3 ? nttprimes[j] : mod); (coffs[j] *= nttprimes[i]) %= (j < 3 ? nttprimes[j] : mod); } } return constants.back(); } template <typename MODINT> vector<MODINT> nttconv(vector<MODINT> a, vector<MODINT> b, bool skip_garner) { int sz = 1, n = a.size(), m = b.size(); while (sz < n + m) sz <<= 1; int mod = MODINT::get_mod(); if (skip_garner or find(begin(nttprimes), end(nttprimes), mod) != end(nttprimes)) { a.resize(sz), b.resize(sz); if (a == b) { ntt(a, false); b = a; } else ntt(a, false), ntt(b, false); for (int i = 0; i < sz; i++) a[i] *= b[i]; ntt(a, true); a.resize(n + m - 1); } else { vector<int> ai(sz), bi(sz); for (int i = 0; i < n; i++) ai[i] = a[i].val; for (int i = 0; i < m; i++) bi[i] = b[i].val; auto ntt0 = nttconv_<nttprimes[0]>(ai, bi); auto ntt1 = nttconv_<nttprimes[1]>(ai, bi); auto ntt2 = nttconv_<nttprimes[2]>(ai, bi); a.resize(n + m - 1); for (int i = 0; i < n + m - 1; i++) { a[i] = garner_ntt_(ntt0[i].val, ntt1[i].val, ntt2[i].val, mod); } } return a; } using mint = ModInt<1000000007>; // Formal Power Series (形式的冪級数) based on ModInt<mod> / ModIntRuntime // Reference: <https://ei1333.github.io/luzhiled/snippets/math/formal-power-series.html> template<typename T> struct FormalPowerSeries : vector<T> { using vector<T>::vector; using P = FormalPowerSeries; void shrink() { while (this->size() and this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator/(const T &v) const { return P(*this) /= v; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; shrink(); return *this; } P &operator+=(const T &v) { if (this->empty()) this->resize(1); (*this)[0] += v; shrink(); return *this; } P &operator-=(const P &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; shrink(); return *this; } P &operator-=(const T &v) { if (this->empty()) this->resize(1); (*this)[0] -= v; shrink(); return *this; } P &operator*=(const T &v) { for (auto &x : (*this)) x *= v; shrink(); return *this; } P &operator*=(const P &r) { if (this->empty() || r.empty()) this->clear(); else { auto ret = nttconv(*this, r); *this = P(ret.begin(), ret.end()); } return *this; } P &operator%=(const P &r) { *this -= *this / r * r; shrink(); return *this; } P operator-() const { P ret = *this; for (auto &v : ret) v = -v; return ret; } P &operator/=(const T &v) { assert(v != T(0)); for (auto &x : (*this)) x /= v; return *this; } P &operator/=(const P &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = (int)this->size() - r.size() + 1; return *this = (reversed().pre(n) * r.reversed().inv(n)).pre(n).reversed(n); } P pre(int sz) const { P ret(this->begin(), this->begin() + min((int)this->size(), sz)); ret.shrink(); return ret; } P operator>>(int sz) const { if ((int)this->size() <= sz) return {}; return P(this->begin() + sz, this->end()); } P operator<<(int sz) const { if (this->empty()) return {}; P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } P reversed(int deg = -1) const { assert(deg >= -1); P ret(*this); if (deg != -1) ret.resize(deg, T(0)); reverse(ret.begin(), ret.end()); ret.shrink(); return ret; } P differential() const { // formal derivative (differential) of f.p.s. const int n = (int)this->size(); P ret(max(0, n - 1)); for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int)this->size(); P ret(n + 1); ret[0] = T(0); for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } P inv(int deg) const { assert(deg >= -1); assert(this->size() and ((*this)[0]) != T(0)); // Requirement: F(0) != 0 const int n = this->size(); if (deg == -1) deg = n; P ret({T(1) / (*this)[0]}); for (int i = 1; i < deg; i <<= 1) { ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1); } ret = ret.pre(deg); ret.shrink(); return ret; } P log(int deg = -1) const { assert(deg >= -1); assert(this->size() and ((*this)[0]) == T(1)); // Requirement: F(0) = 1 const int n = (int)this->size(); if (deg == 0) return {}; if (deg == -1) deg = n; return (this->differential() * this->inv(deg)).pre(deg - 1).integral(); } P sqrt(int deg = -1) const { assert(deg >= -1); const int n = (int)this->size(); if (deg == -1) deg = n; if (this->empty()) return {}; if ((*this)[0] == T(0)) { for (int i = 1; i < n; i++) if ((*this)[i] != T(0)) { if ((i & 1) or deg - i / 2 <= 0) return {}; return (*this >> i).sqrt(deg - i / 2) << (i / 2); } return {}; } T sqrtf0 = (*this)[0].sqrt(); if (sqrtf0 == T(0)) return {}; P y = (*this) / (*this)[0], ret({T(1)}); T inv2 = T(1) / T(2); for (int i = 1; i < deg; i <<= 1) { ret = (ret + y.pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg) * sqrtf0; } P exp(int deg = -1) const { assert(deg >= -1); assert(this->empty() or ((*this)[0]) == T(0)); // Requirement: F(0) = 0 const int n = (int)this->size(); if (deg == -1) deg = n; P ret({T(1)}); for (int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } P pow(long long int k, int deg = -1) const { assert(deg >= -1); const int n = (int)this->size(); if (deg == -1) deg = n; for (int i = 0; i < n; i++) { if ((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P C(*this * rev); P D(n - i); for (int j = i; j < n; j++) D[j - i] = C[j]; D = (D.log(deg) * T(k)).exp(deg) * (*this)[i].power(k); P E(deg); if (k * (i > 0) > deg or k * i > deg) return {}; long long int S = i * k; for (int j = 0; j + S < deg and j < (int)D.size(); j++) E[j + S] = D[j]; E.shrink(); return E; } } return *this; } T coeff(int i) const { if ((int)this->size() <= i) return T(0); return (*this)[i]; } T eval(T x) const { T ret = 0, w = 1; for (auto &v : *this) ret += w * v, w *= x; return ret; } }; int main() { int N, D, K; cin >> N >> D >> K; FormalPowerSeries<mint> fps(D + 1); REP(i, D) fps[i + 1] = 1; cout << fps.pow(N, K + 1).coeff(K) << endl; }