結果
問題 | No.1011 Infinite Stairs |
ユーザー | 👑 emthrm |
提出日時 | 2020-03-20 21:39:39 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,378 bytes |
コンパイル時間 | 2,620 ms |
コンパイル使用メモリ | 208,740 KB |
実行使用メモリ | 10,496 KB |
最終ジャッジ日時 | 2024-12-15 04:55:51 |
合計ジャッジ時間 | 31,299 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,496 KB |
testcase_01 | AC | 2 ms
9,856 KB |
testcase_02 | AC | 125 ms
10,496 KB |
testcase_03 | TLE | - |
testcase_04 | AC | 1,275 ms
10,496 KB |
testcase_05 | TLE | - |
testcase_06 | AC | 2 ms
10,496 KB |
testcase_07 | AC | 67 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 45 ms
5,248 KB |
testcase_11 | AC | 1,552 ms
5,248 KB |
testcase_12 | AC | 34 ms
5,248 KB |
testcase_13 | AC | 930 ms
5,248 KB |
testcase_14 | AC | 11 ms
5,248 KB |
testcase_15 | AC | 1,206 ms
5,248 KB |
testcase_16 | TLE | - |
testcase_17 | AC | 380 ms
5,248 KB |
testcase_18 | TLE | - |
testcase_19 | AC | 36 ms
5,248 KB |
testcase_20 | AC | 14 ms
5,248 KB |
testcase_21 | AC | 1,284 ms
5,248 KB |
testcase_22 | TLE | - |
testcase_23 | AC | 1,530 ms
5,248 KB |
testcase_24 | AC | 1,638 ms
5,248 KB |
testcase_25 | TLE | - |
testcase_26 | AC | 522 ms
9,344 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); } } iosetup; int mod = MOD; struct ModInt { unsigned val; ModInt(): val(0) {} ModInt(ll x) : val(x >= 0 ? x % mod : x % mod + mod) {} ModInt pow(ll exponent) { ModInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } ModInt &operator+=(const ModInt &x) { if((val += x.val) >= mod) val -= mod; return *this; } ModInt &operator-=(const ModInt &x) { if((val += mod - x.val) >= mod) val -= mod; return *this; } ModInt &operator*=(const ModInt &x) { val = static_cast<unsigned long long>(val) * x.val % mod; return *this; } ModInt &operator/=(const ModInt &x) { // assert(__gcd(static_cast<int>(x.val), mod) == 1); unsigned a = x.val, b = mod; int u = 1, v = 0; while (b) { unsigned tmp = a / b; swap(a -= tmp * b, b); swap(u -= tmp * v, v); } return *this *= u; } bool operator==(const ModInt &x) const { return val == x.val; } bool operator!=(const ModInt &x) const { return val != x.val; } bool operator<(const ModInt &x) const { return val < x.val; } bool operator<=(const ModInt &x) const { return val <= x.val; } bool operator>(const ModInt &x) const { return val > x.val; } bool operator>=(const ModInt &x) const { return val >= x.val; } ModInt &operator++() { if (++val == mod) val = 0; return *this; } ModInt operator++(int) { ModInt res = *this; ++*this; return res; } ModInt &operator--() { val = (val == 0 ? mod : val) - 1; return *this; } ModInt operator--(int) { ModInt res = *this; --*this; return res; } ModInt operator+() const { return *this; } ModInt operator-() const { return ModInt(val ? mod - val : 0); } ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; } ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; } ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; } ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; } friend ostream &operator<<(ostream &os, const ModInt &x) { return os << x.val; } friend istream &operator>>(istream &is, ModInt &x) { ll val; is >> val; x = ModInt(val); return is; } }; ModInt abs(const ModInt &x) { return x; } struct Combinatorics { int val; // "val!" and "mod" must be disjoint. vector<ModInt> fact, fact_inv, inv; Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) { fact[0] = 1; FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i; fact_inv[val] = ModInt(1) / fact[val]; for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i; FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i]; } ModInt nCk(int n, int k) { if (n < 0 || n < k || k < 0) return ModInt(0); // assert(n <= val && k <= val); return fact[n] * fact_inv[k] * fact_inv[n - k]; } ModInt nPk(int n, int k) { if (n < 0 || n < k || k < 0) return ModInt(0); // assert(n <= val); return fact[n] * fact_inv[n - k]; } ModInt nHk(int n, int k) { if (n < 0 || k < 0) return ModInt(0); return (k == 0 ? ModInt(1) : nCk(n + k - 1, k)); } }; template <typename Abelian> struct BITRangeAdd { BITRangeAdd(int n_, const Abelian UNITY = 0) : n(n_), UNITY(UNITY) { ++n; dat_const.assign(n, UNITY); dat_linear.assign(n, UNITY); } void add(int left, int right, Abelian val) { if (right < ++left) return; for (int i = left; i < n; i += i & -i) { dat_const[i] -= val * (left - 1); dat_linear[i] += val; } for (int i = right + 1; i < n; i += i & -i) { dat_const[i] += val * right; dat_linear[i] -= val; } } Abelian sum(int idx) { Abelian res = UNITY; for (int i = idx; i > 0; i -= i & -i) res += dat_linear[i]; res *= idx; for (int i = idx; i > 0; i -= i & -i) res += dat_const[i]; return res; } Abelian sum(int left, int right) { if (right <= left) return UNITY; return sum(right) - sum(left); } Abelian operator[](const int idx) { return sum(idx, idx + 1); } void reset() { fill(ALL(dat_const), UNITY); fill(ALL(dat_linear), UNITY); } private: int n; const Abelian UNITY; vector<Abelian> dat_const, dat_linear; }; int main() { int n, d, k; cin >> n >> d >> k; vector<BITRangeAdd<ModInt> > dp(2, k + 1); dp[0].add(0, 1, 1); REP(i, n) { dp[(i + 1) & 1].reset(); REP(j, k) { int l = j + 1, r = min(j + d, k); dp[(i + 1) & 1].add(l, r + 1, dp[i & 1][j]); } } cout << dp[n & 1][k] << '\n'; return 0; }