結果

問題 No.1013 〇マス進む
ユーザー hitonanodehitonanode
提出日時 2020-03-20 21:46:22
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 146 ms / 2,000 ms
コード長 4,988 bytes
コンパイル時間 1,762 ms
コンパイル使用メモリ 177,200 KB
実行使用メモリ 28,672 KB
最終ジャッジ日時 2024-12-15 05:13:31
合計ジャッジ時間 7,945 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 62
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/

// Binary lifting / `Doubling`
// Complexity: O(NlogN) precalculation / O(logN) per query
// <https://atcoder.jp/contests/arc060/submissions/7039451>
struct BinaryLifting
{
    int N, INVALID, lgD;
    std::vector<std::vector<lint>> mat;
    BinaryLifting() : N(0), lgD(0) {}
    BinaryLifting(const std::vector<lint> &vec_nxt, int INVALID = -1, int lgd = 0) : N(vec_nxt.size()), INVALID(INVALID), lgD(lgd)
    {
        while ((1LL << lgD) < N) lgD++;
        mat.assign(lgD, std::vector<lint>(N, INVALID));
        mat[0] = vec_nxt;
        for (int d = 0; d < lgD - 1; d++) {
            for (int i = 0; i < N; i++) if (mat[d][i] != INVALID) mat[d + 1][i] = mat[d][mat[d][i] % N] + mat[d][i] / N * N;
        }
    }
    lint kth_next(lint now, lint k)
    {
        if (k >= (1 << lgD)) exit(8);
        for (lint d = 0; k and now != INVALID; d++, k >>= 1) if (k & 1) now = mat[d][now % N] + now / N * N;
        return now;
    }

    // Distance from l to [r, \infty)
    // Requirement: mat[0][i] > i for all i (monotone increasing)
    int distance(int l, int r)
    {
        if (l >= r) return 0;
        int ret = 0;
        for (int d = lgD - 1; d >= 0; d--) {
            if (mat[d][l] < r and mat[d][l] != INVALID) ret += 1 << d, l = mat[d][l];
        }
        if (mat[0][l] == INVALID or mat[0][l] >= r) return ret + 1;
        else return -1; // Unable to reach
    }
};

int main()
{
    int N, K;
    cin >> N >> K;
    vector<int> P(N);
    cin >> P;
    vector<lint> nxt(N);
    REP(i, N) nxt[i] = i + P[i];
    BinaryLifting bl(nxt, -1, 30);
    REP(i, N) printf("%lld\n", bl.kth_next(i, K) + 1);
}
0