結果
| 問題 |
No.1011 Infinite Stairs
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-03-20 22:24:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 277 ms / 2,000 ms |
| コード長 | 6,255 bytes |
| コンパイル時間 | 2,671 ms |
| コンパイル使用メモリ | 197,928 KB |
| 最終ジャッジ日時 | 2025-01-09 08:42:24 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 24 |
ソースコード
#include <bits/stdc++.h>
using i32 = int_fast32_t;
using i64 = int_fast64_t;
using u32 = uint_fast32_t;
using u64 = uint_fast64_t;
using f64 = double;
using f80 = long double;
#define FOR(v, a, b) for(i64 v = (a); v < (b); ++v)
#define FORE(v, a, b) for(i64 v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(i64 v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))
#ifdef DEBUG
#include <Mylib/Debug/debug.cpp>
#else
#define dump(...) ((void)0)
#endif
using namespace std;
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T> void puts_all(const T &value){std::cout << value << "\n";}
template <typename T, typename ...Args> void puts_all(const T &value, const Args&... args){std::cout << value << " ";puts_all(args...);}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
template <typename T> auto make_vector(int n, int m, const T &value){return vector<vector<T>>(n, vector<T>(m, value));}
struct Init{
Init(){
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(12);
cerr << fixed << setprecision(12);
}
}init;
template <uint32_t M> class ModInt{
public:
uint64_t val;
constexpr ModInt(): val(0){}
constexpr ModInt(std::int64_t n){
if(n >= M) val = n % M;
else if(n < 0) val = n % M + M;
else val = n;
}
inline constexpr auto operator+(const ModInt &a) const {return ModInt(val + a.val);}
inline constexpr auto operator-(const ModInt &a) const {return ModInt(val - a.val);}
inline constexpr auto operator*(const ModInt &a) const {return ModInt(val * a.val);}
inline constexpr auto operator/(const ModInt &a) const {return ModInt(val * a.inv().val);}
inline constexpr auto& operator=(const ModInt &a){val = a.val; return *this;}
inline constexpr auto& operator+=(const ModInt &a){if((val += a.val) >= M) val -= M; return *this;}
inline constexpr auto& operator-=(const ModInt &a){if(val < a.val) val += M; val -= a.val; return *this;}
inline constexpr auto& operator*=(const ModInt &a){(val *= a.val) %= M; return *this;}
inline constexpr auto& operator/=(const ModInt &a){(val *= a.inv().val) %= M; return *this;}
inline constexpr bool operator==(const ModInt &a) const {return val == a.val;}
inline constexpr bool operator!=(const ModInt &a) const {return val != a.val;}
inline constexpr auto& operator++(){*this += 1; return *this;}
inline constexpr auto& operator--(){*this -= 1; return *this;}
inline constexpr auto operator++(int){auto t = *this; *this += 1; return t;}
inline constexpr auto operator--(int){auto t = *this; *this -= 1; return t;}
inline constexpr static ModInt power(int64_t n, int64_t p){
if(p < 0) return power(n, -p).inv();
int64_t ret = 1, e = n;
for(; p; (e *= e) %= M, p >>= 1) if(p & 1) (ret *= e) %= M;
return ret;
}
inline constexpr static ModInt inv(int64_t a){
int64_t b = M, u = 1, v = 0;
while(b){
int64_t t = a / b;
a -= t * b; std::swap(a,b);
u -= t * v; std::swap(u,v);
}
u %= M;
if(u < 0) u += M;
return u;
}
inline constexpr static auto frac(int64_t a, int64_t b){return ModInt(a) / ModInt(b);}
inline constexpr auto power(int64_t p) const {return power(val, p);}
inline constexpr auto inv() const {return inv(val);}
friend inline constexpr auto operator-(const ModInt &a){return ModInt(-a.val);}
friend inline constexpr auto operator+(int64_t a, const ModInt &b){return ModInt(a) + b;}
friend inline constexpr auto operator-(int64_t a, const ModInt &b){return ModInt(a) - b;}
friend inline constexpr auto operator*(int64_t a, const ModInt &b){return ModInt(a) * b;}
friend inline constexpr auto operator/(int64_t a, const ModInt &b){return ModInt(a) / b;}
friend std::istream& operator>>(std::istream &s, ModInt<M> &a){s >> a.val; return s;}
friend std::ostream& operator<<(std::ostream &s, const ModInt<M> &a){s << a.val; return s;}
template <int N>
inline static auto div(){
static auto value = inv(N);
return value;
}
};
using mint = ModInt<1000000007>;
template <typename T, typename Add = std::plus<T>, typename Minus = std::minus<T>>
class CumulativeSum1D{
std::vector<T> data;
const int N;
const Add add;
const Minus minus;
bool is_built = false;
public:
CumulativeSum1D(const std::vector<T> &a, const T &e = 0, const Add &add = Add(), const Minus &minus = Minus()):
N(a.size()), add(add), minus(minus)
{
data.assign(N+1, e);
for(int i = 0; i < N; ++i) data[i+1] = a[i];
}
CumulativeSum1D(int N, const T &e = 0, const Add &add = Add(), const Minus &minus = Minus()):
N(N), add(add), minus(minus)
{
data.assign(N+1, e);
}
inline void update(int i, const T &val){
assert(not is_built);
data[i+1] = add(data[i+1], val);
}
inline void build(){
assert(not is_built);
for(int i = 0; i < N; ++i) data[i+1] = add(data[i+1], data[i]);
is_built = true;
}
/**
* @attention [i, j)
*/
inline T get(int i, int j) const {
assert(is_built);
return minus(data[j], data[i]);
}
};
int main(){
int N, d, K;
while(cin >> N >> d >> K){
int M = N * d + 1;
vector<mint> dp(M);
dp[0] = 1;
REP(i,N){
auto s = CumulativeSum1D(dp);
s.build();
REP(j,M){
dp[j] = s.get(max<int>(j-d, i), j);
}
}
puts_all(dp[K]);
}
return 0;
}