結果
| 問題 | No.1014 competitive fighting |
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-03-20 22:43:05 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 98 ms / 2,000 ms |
| コード長 | 15,706 bytes |
| コンパイル時間 | 2,489 ms |
| コンパイル使用メモリ | 182,528 KB |
| 最終ジャッジ日時 | 2025-01-09 08:44:54 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 51 |
ソースコード
/* preprocessor start */
#ifdef LOCAL
//*
#define _GLIBCXX_DEBUG // gcc
/*/
#define _LIBCPP_DEBUG 0 // clang
//*/
#define __clock__
// #define __buffer_check__
#else
#pragma GCC optimize("Ofast")
/*
#define _GLIBCXX_DEBUG // gcc
/*/
// #define _LIBCPP_DEBUG 0 // clang
//*/
// #define __buffer_check__
// #define NDEBUG
#endif
#define __precision__ 10
#define iostream_untie true
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <valarray>
#define __all(v) std::begin(v), std::end(v)
#define __rall(v) std::rbegin(v), std::rend(v)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
/* preprocessor end */
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
namespace setting
{
using namespace std;
using namespace chrono;
system_clock::time_point start_time, end_time;
long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
void print_elapsed_time() { cerr << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n\n"; }
void buffer_check() { char bufc; if(cin >> bufc) cerr << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
struct setupper
{
setupper()
{
if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);
cout << fixed << setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr)) cerr << fixed << setprecision(__precision__);
#endif
#ifdef LOCAL
cerr << boolalpha << "\n----- stderr at LOCAL -----\n\n";
#endif
#ifdef __buffer_check__
atexit(buffer_check);
#endif
#ifdef __clock__
start_time = system_clock::now();
atexit(print_elapsed_time);
#endif
}
} __setupper; // struct setupper
} // namespace setting
#ifdef __clock__
#include "C:\Users\euler\OneDrive\Documents\Competitive_Programming\Library\local\clock.hpp"
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
#ifdef LOCAL
#include "C:\Users\euler\OneDrive\Documents\Competitive_Programming\Library\local\dump.hpp"
#else
#define dump(...) ((void)0)
#endif
/* function utility start */
template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }
#define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
std::ptrdiff_t dist(__ng - __ok);
while(std::abs(dist) > 1)
{
iter_type mid(__ok + dist / 2);
if(pred(mid)) __ok = mid, dist -= dist / 2;
else __ng = mid, dist /= 2;
}
return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
/* functon utility end */
/* using alias start */
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
/* using alias end */
/* library start */
#include <cassert>
#include <vector>
template <class monoid>
class segment_tree
{
using size_type = typename std::vector<monoid>::size_type;
class unique_queue
{
size_type *que, *begin, *end;
bool *in;
public:
unique_queue() : que(), begin(), end(), in() {}
unique_queue(size_type n) : que(new size_type[n]), begin(que), end(que), in(new bool[n]{}) {}
~unique_queue() { delete[] que; delete[] in; }
void clear() { begin = end = que; }
bool empty() const { return begin == end; }
bool push(size_type index)
{
if(in[index]) return false;
return in[*end++ = index] = true;
}
size_type pop() { return in[*begin] = false, *begin++; }
}; // struct unique_queue
size_type size_orig, height, size_ext;
std::vector<monoid> data;
unique_queue que;
void recalc(const size_type node) { data[node] = data[node << 1] + data[node << 1 | 1]; }
void rebuild()
{
while(!que.empty())
{
const size_type index = que.pop() >> 1;
if(index && que.push(index)) recalc(index);
}
que.clear();
}
template <class pred_type>
size_type left_search_subtree(size_type index, const pred_type pred, monoid mono) const
{
assert(index);
while(index < size_ext)
{
const monoid tmp = data[(index <<= 1) | 1] + mono;
if(pred(tmp)) mono = tmp;
else ++index;
}
return ++index -= size_ext;
}
template <class pred_type>
size_type right_search_subtree(size_type index, const pred_type pred, monoid mono) const
{
assert(index);
while(index < size_ext)
{
const monoid tmp = mono + data[index <<= 1];
if(pred(tmp)) ++index, mono = tmp;
}
return (index -= size_ext) < size_orig ? index : size_orig;
}
public:
segment_tree(const size_type n = 0) : size_orig{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), size_ext{1u << height}, data(size_ext << 1), que(size_ext << 1) {}
segment_tree(const size_type n, const monoid &init) : segment_tree(n)
{
std::fill(std::next(std::begin(data), size_ext), std::end(data), init);
for(size_type i{size_ext}; --i; ) recalc(i);
}
template <class iter_type, class value_type = typename std::iterator_traits<iter_type>::value_type>
segment_tree(iter_type first, iter_type last)
: size_orig(std::distance(first, last)), height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0), size_ext{1u << height}, data(size_ext << 1), que(size_ext << 1)
{
static_assert(std::is_constructible<monoid, value_type>::value, "monoid(iter_type::value_type) is not constructible.");
for(auto iter{std::next(std::begin(data), size_ext)}; iter != std::end(data) && first != last; ++iter, ++first) *iter = monoid{*first};
for(size_type i{size_ext}; --i; ) recalc(i);
}
template <class container_type, typename = typename container_type::value_type>
segment_tree(const container_type &cont) : segment_tree(std::begin(cont), std::end(cont)) {}
size_type size() const { return size_orig; }
size_type capacity() const { return size_ext; }
// reference to the element at the index.
typename decltype(data)::reference operator[](size_type index)
{
assert(index < size_orig);
que.push(index |= size_ext);
return data[index];
}
// const reference to the element at the index.
typename decltype(data)::const_reference operator[](size_type index) const
{
assert(index < size_orig);
return data[index |= size_orig];
}
monoid fold(size_type first, size_type last)
{
assert(last <= size_orig);
rebuild();
monoid leftval{}, rightval{};
first += size_ext, last += size_ext;
while(first < last)
{
if(first & 1) leftval = leftval + data[first++];
if(last & 1) rightval = data[--last] + rightval;
first >>= 1, last >>= 1;
}
return leftval + rightval;
}
monoid fold() { return fold(0, size_orig); }
template <class pred_type>
size_type left_search(size_type right, const pred_type pred)
{
assert(right <= size_orig);
rebuild();
right += size_ext;
monoid mono{};
for(size_type left{size_ext}; left != right; left >>= 1, right >>= 1)
{
if((left & 1) != (right & 1))
{
const monoid tmp = data[--right] + mono;
if(!pred(tmp)) return left_search_subtree(right, pred, mono);
mono = tmp;
}
}
return 0;
}
template <class pred_type>
size_type right_search(size_type left, const pred_type pred)
{
assert(left <= size_orig);
rebuild();
left += size_ext;
monoid mono{};
for(size_type right{size_ext << 1}; left != right; left >>= 1, right >>= 1)
{
if((left & 1) != (right & 1))
{
const monoid tmp = mono + data[left];
if(!pred(tmp)) return right_search_subtree(left, pred, mono);
mono = tmp;
++left;
}
}
return size_orig;
}
}; // class segment_tree
/* library end */
/* The main code follows. */
template <class T> void _main();
struct solver;
int main() { _main<solver>(); }
template <class solver>
void _main()
{
unsigned t;
#ifdef LOCAL
t = 1;
#else
t = 1; // single test case
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--) solver();
}
template <class T>
struct max_mono
{
T val;
max_mono(T v=-1e9) : val(v) {}
// binary operation
max_mono operator+(const max_mono& rhs) const { return max_mono{*this} += rhs; }
// operation assignment
max_mono &operator+=(const max_mono &rhs)
{
if(val < rhs.val) val = rhs.val;
return *this;
}
};
struct solver
{
solver()
{
int n; cin>>n;
vector<tuple<i64,i64,i64>> mov(n);
for(int i=0; i<n; ++i)
{
int a,b,c; cin>>a>>b>>c;
c=b-c;
mov[i]=tie(a,c,b);
}
vector<int> id(n);
iota(__all(id),0);
sort(__all(id), [&](int x,int y){return mov[x]<mov[y];});
sort(__all(mov));
const i64 inf=1e18;
vector<i64> dp(n),dp2(n+1);
dp[0]=dp2[0]=0;
segment_tree<max_mono<int>> seg(n);
for(int i=0;i<n;++i)
{
int c; tie(ignore,c,ignore)=mov[i];
seg[i]=upper_bound(__all(mov), tie(c, inf, inf))-begin(mov);
}
int lop=-1;
for(int i=0,ii;i<n;i=ii)
{
int a,c,b; tie(a,c,b)=mov[i];
int j=upper_bound(__all(mov), tie(c,inf,inf))-begin(mov);
dump(i, j);
if(j>i+1)
{
if(~lop)
{
dp[i]=inf;
ii=i+1;
}
else
{
if(seg.fold(i+1,j).val>i)
{
dp[i]=inf;
ii=i+1;
}
else
{
i64 tmp=dp2[i];
for(int k=i+1;k<j;++k)
{
dp[k]=dp2[seg[k].val]+get<2>(mov[k]);
chmax(tmp, dp[k]);
}
dp[i]=tmp+b;
ii=j;
}
}
}
else
{
ii=i+1;
dp[i]=dp2[min(i,j)]+b;
}
for(int k=i;k<ii;++k)
{
dp2[k+1]=max(dp2[k], dp[k]);
if(lop<0 and dp[k]>=inf) lop=k;
}
}
vector<i64> ans(n);
for(int i=0;i<n;++i)
{
ans[id[i]]=dp[i];
}
for(auto &e: ans)
{
if(e>=inf) cout << "BAN" << "\n";
else cout << e << "\n";
}
}
};
jell