結果
問題 | No.1009 面積の求め方 |
ユーザー | kotamanegi |
提出日時 | 2020-03-21 08:59:19 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 16,898 bytes |
コンパイル時間 | 2,317 ms |
コンパイル使用メモリ | 171,520 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-11-30 17:01:47 |
合計ジャッジ時間 | 3,068 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | AC | 1 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,824 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
コンパイルメッセージ
main.cpp:4:18: warning: '#pragma comment linker' ignored [-Wignored-pragmas] 4 | #pragma comment (linker, "/STACK:526000000") | ^ 1 warning generated.
ソースコード
#define _CRT_SECURE_NO_WARNINGS #define _USE_MATH_DEFINES #pragma comment (linker, "/STACK:526000000") #include "bits/stdc++.h" using namespace std; typedef string::const_iterator State; #define eps 1e-5L #define MAX_MOD 1000000007LL #define GYAKU 500000004LL #define MOD 998244353LL #define pb push_back #define mp make_pair typedef long long ll; #define REP(a,b) for(long long (a) = 0;(a) < (b);++(a)) #define ALL(x) (x).begin(),(x).end() // geometry library typedef complex<long double> Point; typedef pair<complex<long double>, complex<long double>> Line; typedef struct Circle { complex<long double> center; long double r; }Circle; long double dot(Point a, Point b) { return (a.real() * b.real() + a.imag() * b.imag()); } long double cross(Point a, Point b) { return (a.real() * b.imag() - a.imag() * b.real()); } long double Dist_Line_Point(Line a, Point b) { if (dot(a.second - a.first, b - a.first) < eps) return abs(b - a.first); if (dot(a.first - a.second, b - a.second) < eps) return abs(b - a.second); return abs(cross(a.second - a.first, b - a.first)) / abs(a.second - a.first); } int is_intersected_ls(Line a, Line b) { return (cross(a.second - a.first, b.first - a.first) * cross(a.second - a.first, b.second - a.first) < eps) && (cross(b.second - b.first, a.first - b.first) * cross(b.second - b.first, a.second - b.first) < eps); } Point intersection_l(Line a, Line b) { Point da = a.second - a.first; Point db = b.second - b.first; return a.first + da * cross(db, b.first - a.first) / cross(db, da); } long double Dist_Line_Line(Line a, Line b) { if (is_intersected_ls(a, b) == 1) { return 0; } return min({ Dist_Line_Point(a,b.first), Dist_Line_Point(a,b.second),Dist_Line_Point(b,a.first),Dist_Line_Point(b,a.second) }); } pair<Point, Point> intersection_Circle_Circle(Circle a, Circle b) { long double dist = abs(a.center - b.center); assert(dist <= eps + a.r + b.r); assert(dist + eps >= abs(a.r - b.r)); Point target = b.center - a.center; long double pointer = target.real() * target.real() + target.imag() * target.imag(); long double aa = pointer + a.r * a.r - b.r * b.r; aa /= 2.0L; Point l{ (aa * target.real() + target.imag() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer, (aa * target.imag() - target.real() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer }; Point r{ (aa * target.real() - target.imag() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer, (aa * target.imag() + target.real() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer }; r = r + a.center; l = l + a.center; return mp(l, r); } //end of geometry template<typename A> A pows(A val, ll b) { assert(b >= 1); A ans = val; b--; while (b) { if (b % 2) { ans *= val; } val *= val; b /= 2LL; } return ans; } template<typename A> class Compressor { public: bool is_zipped = false; map<A, ll> zipper; map<ll, A> unzipper; queue<A> fetcher; Compressor() { is_zipped = false; zipper.clear(); unzipper.clear(); } void add(A now) { assert(is_zipped == false); zipper[now] = 1; fetcher.push(now); } void exec() { assert(is_zipped == false); int cnt = 0; for (auto i = zipper.begin(); i != zipper.end(); ++i) { i->second = cnt; unzipper[cnt] = i->first; cnt++; } is_zipped = true; } ll fetch() { assert(is_zipped == true); A hoge = fetcher.front(); fetcher.pop(); return zipper[hoge]; } ll zip(A now) { assert(is_zipped == true); assert(zipper.find(now) != zipper.end()); return zipper[now]; } A unzip(ll a) { assert(is_zipped == true); assert(a < unzipper.size()); return unzipper[a]; } ll next(A now) { auto x = zipper.upper_bound(now); if (x == zipper.end()) return zipper.size(); return (ll)((*x).second); } ll back(A now) { auto x = zipper.lower_bound(now); if (x == zipper.begin()) return -1; x--; return (ll)((*x).second); } }; template<typename A> class Matrix { public: vector<vector<A>> data; Matrix(vector<vector<A>> a) :data(a) { } Matrix operator + (const Matrix obj) { vector<vector<A>> ans; assert(obj.data.size() == this->data.size()); assert(obj.data[0].size() == this->data[0].size()); REP(i, obj.data.size()) { ans.push_back(vector<A>()); REP(q, obj.data[i].size()) { A hoge = obj.data[i][q] + (this->data[i][q]); ans.back().push_back(hoge); } } return Matrix(ans); } Matrix operator - (const Matrix obj) { vector<vector<A>> ans; assert(obj.data.size() == this->data.size()); assert(obj.data[0].size() == this->data[0].size()); REP(i, obj.data.size()) { ans.push_back(vector<A>()); REP(q, obj.data[i].size()) { A hoge = this->data[i][q] - obj.data[i][q]; ans.back().push_back(hoge); } } return Matrix(ans); } Matrix operator * (const Matrix obj) { vector<vector<A>> ans; assert(obj.data.size() == this->data[0].size()); REP(i, this -> data.size()) { ans.push_back(vector<A>()); REP(q, obj.data[0].size()) { A hoge = (this->data[i][0]) * (obj.data[0][q]); for (int t = 1; t < obj.data[i].size(); ++t) { hoge += this->data[i][t] * obj.data[t][q]; } ans.back().push_back(hoge); } } return Matrix(ans); } Matrix& operator *= (const Matrix obj) { *this = (*this * obj); return *this; } Matrix& operator += (const Matrix obj) { *this = (*this + obj); return *this; } Matrix& operator -= (const Matrix obj) { *this = (*this - obj); return *this; } }; class modint { public: using u64 = std::uint_fast64_t; u64 value = 0; u64 mod; modint(ll a, ll b) : value(((a% b) + 2 * b) % b), mod(b) { } modint operator+(const modint rhs) const { return modint(*this) += rhs; } modint operator-(const modint rhs) const { return modint(*this) -= rhs; } modint operator*(const modint rhs) const { return modint(*this) *= rhs; } modint operator/(const modint rhs) const { return modint(*this) /= rhs; } modint& operator+=(const modint rhs) { assert(rhs.mod == mod); value += rhs.value; if (value >= mod) { value -= mod; } return *this; } modint& operator-=(const modint rhs) { assert(rhs.mod == mod); if (value < rhs.value) { value += mod; } value -= rhs.value; return *this; } modint& operator*=(const modint rhs) { assert(rhs.mod == mod); value = (value * rhs.value) % mod; return *this; } modint& operator/=(modint rhs) { assert(rhs.mod == mod); ll rem = mod - 2; while (rem) { if (rem % 2) { *this *= rhs; } rhs *= rhs; rem /= 2LL; } return *this; } bool operator <(modint rhs) const { return value < rhs.value; } friend ostream& operator<<(ostream& os, modint& p) { os << p.value; return (os); } }; class Dice { public: vector<ll> vertexs; //Up: 0,Left: 1,Center: 2,Right: 3,Adj: 4, Down: 5 Dice(vector<ll> init) :vertexs(init) { } //Look from Center void RtoL() { for (int q = 1; q < 4; ++q) { swap(vertexs[q], vertexs[q + 1]); } } void LtoR() { for (int q = 3; q >= 1; --q) { swap(vertexs[q], vertexs[q + 1]); } } void UtoD() { swap(vertexs[5], vertexs[4]); swap(vertexs[2], vertexs[5]); swap(vertexs[0], vertexs[2]); } void DtoU() { swap(vertexs[0], vertexs[2]); swap(vertexs[2], vertexs[5]); swap(vertexs[5], vertexs[4]); } bool ReachAble(Dice now) { set<Dice> hoge; queue<Dice> next; next.push(now); hoge.insert(now); while (next.empty() == false) { Dice seeing = next.front(); next.pop(); if (seeing == *this) return true; seeing.RtoL(); if (hoge.count(seeing) == 0) { hoge.insert(seeing); next.push(seeing); } seeing.LtoR(); seeing.LtoR(); if (hoge.count(seeing) == 0) { hoge.insert(seeing); next.push(seeing); } seeing.RtoL(); seeing.UtoD(); if (hoge.count(seeing) == 0) { hoge.insert(seeing); next.push(seeing); } seeing.DtoU(); seeing.DtoU(); if (hoge.count(seeing) == 0) { hoge.insert(seeing); next.push(seeing); } } return false; } bool operator ==(const Dice& a) { for (int q = 0; q < 6; ++q) { if (a.vertexs[q] != (*this).vertexs[q]) { return false; } } return true; } bool operator <(const Dice& a) const { return (*this).vertexs < a.vertexs; } }; pair<Dice, Dice> TwoDimDice(int center, int up) { int target = 1; while (true) { if (center != target && 7 - center != target && up != target && 7 - up != target) { break; } target++; } return mp(Dice(vector<ll>{up, target, center, 7 - target, 7 - center, 7 - up}), Dice(vector<ll>{up, 7 - target, center, target, 7 - center, 7 - up})); } tuple<Dice, Dice, Dice, Dice> OneDimDice(int center) { int bo = min(center, 7 - center); pair<int, int> goa; if (bo == 1) { goa = mp(2, 3); } else if (bo == 2) { goa = mp(1, 3); } else if (bo == 3) { goa = mp(1, 2); } tuple<Dice, Dice, Dice, Dice> now = make_tuple(Dice(vector<ll>{goa.first, goa.second, center, 7 - goa.second, 7 - center, 7 - goa.first}), Dice(vector<ll>{goa.first, 7 - goa.second, center, goa.second, 7 - center, 7 - goa.first}), Dice(vector<ll>{7 - goa.first, goa.second, center, 7 - goa.second, 7 - center, goa.first}), Dice(vector<ll>{7 - goa.first, 7 - goa.second, center, goa.second, 7 - center, goa.first})); return now; } template<typename A, typename B> class Dijkstra { public: vector<vector<pair<int, A>>> vertexs; B Cost_Function; Dijkstra(int n, B cost) : Cost_Function(cost) { vertexs = vector<vector<pair<int, A>>>(n, vector<pair<int, A>>{}); } ~Dijkstra() { vertexs.clear(); } void add_edge(int a, int b, A c) { vertexs[a].push_back(mp(b, c)); } vector<ll> build_result(int StartPoint) { vector<ll> dist(vertexs.size(), 2e18); dist[StartPoint] = 0; priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<pair<ll, int>>> next; next.push(make_pair(0, StartPoint)); while (next.empty() == false) { pair<ll, int> now = next.top(); next.pop(); if (dist[now.second] != now.first) continue; for (auto x : vertexs[now.second]) { ll now_cost = now.first + Cost_Function(x.second); if (dist[x.first] > now_cost) { dist[x.first] = now_cost; next.push(mp(now_cost, x.first)); } } } return dist; } }; class Dinic { public: struct edge { int to; int cap; int rev; }; vector<vector<edge>> Graph; vector<int> level; vector<int> itr; Dinic(int n) { Graph = vector<vector<edge>>(n, vector<edge>()); } void add_edge(int a, int b, int cap) { Graph[a].push_back(edge{ b, cap ,(int)Graph[b].size() }); Graph[b].push_back(edge{ a,0,(int)Graph[a].size() - 1 }); } void bfs(int s) { level = vector<int>(Graph.size(), -1); level[s] = 0; queue<int> next; next.push(s); while (next.empty() == false) { int now = next.front(); next.pop(); for (auto x : Graph[now]) { if (x.cap == 0) continue; if (level[x.to] == -1) { level[x.to] = level[now] + 1; next.push(x.to); } } } } int dfs(int now, int goal, int val) { if (goal == now) return val; for (int& i = itr[now]; i < (int)Graph[now].size(); ++i) { edge& target = Graph[now][i]; if (target.cap > 0 && level[now] < level[target.to]) { int d = dfs(target.to, goal, min(val, target.cap)); if (d > 0) { target.cap -= d; Graph[target.to][target.rev].cap += d; return d; } } } return 0; } int run(int s, int t) { int ans = 0; int f = 0; while (bfs(s), level[t] >= 0) { itr = vector<int>(Graph.size(), 0); while ((f = dfs(s, t, 1e9)) > 0) { ans += f; } } return ans; } }; //by ei1333 //https://ei1333.github.io/luzhiled/snippets/structure/segment-tree.html template< typename Monoid > struct SegmentTree { using F = function< Monoid(Monoid, Monoid) >; int sz; vector< Monoid > seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid& M1) : f(f), M1(M1) { sz = 1; while (sz < n) sz <<= 1; seg.assign(2 * sz + 1, M1); } void set(int k, const Monoid& x) { seg[k + sz] = x; } void build() { for (int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } void update(int k, const Monoid& x) { k += sz; seg[k] = x; while (k >>= 1) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) L = f(L, seg[a++]); if (b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int& k) const { return seg[k + sz]; } template< typename C > int find_subtree(int a, const C& check, Monoid& M, bool type) { while (a < sz) { Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]); if (check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template< typename C > int find_first(int a, const C& check) { Monoid L = M1; if (a <= 0) { if (check(f(L, seg[1]))) return find_subtree(1, check, L, false); return -1; } int b = sz; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) { Monoid nxt = f(L, seg[a]); if (check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template< typename C > int find_last(int b, const C& check) { Monoid R = M1; if (b >= sz) { if (check(f(seg[1], R))) return find_subtree(1, check, R, true); return -1; } int a = sz; for (b += sz; a < b; a >>= 1, b >>= 1) { if (b & 1) { Monoid nxt = f(seg[--b], R); if (check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; unsigned long xor128() { static unsigned long x = 123456789, y = 362436069, z = 521288629, w = 88675123; unsigned long t = (x ^ (x << 11)); x = y; y = z; z = w; return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8))); } void init() { iostream::sync_with_stdio(false); cin.tie(0); } #define int ll void solve() { long double a, b; cin >> a >> b; long double ans = 0; for (long double i = a; i <= b; i += 0.00001L) { ans += abs((i - a) * (i - b)); } cout << ans << endl; } #undef int int main() { init(); solve(); }