結果
| 問題 | No.8046 yukicoderの過去問 |
| コンテスト | |
| ユーザー |
junppp
|
| 提出日時 | 2020-03-24 13:47:52 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 520 ms / 2,000 ms |
| コード長 | 15,367 bytes |
| 記録 | |
| コンパイル時間 | 2,616 ms |
| コンパイル使用メモリ | 194,992 KB |
| 実行使用メモリ | 30,624 KB |
| 最終ジャッジ日時 | 2024-12-31 14:57:02 |
| 合計ジャッジ時間 | 6,008 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 |
ソースコード
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
//#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
#ifdef _MSC_VER
#pragma push_macro("long")
#undef long
#ifdef _WIN32
inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; }
inline unsigned int __builtin_clz(unsigned int x) { unsigned long r; _BitScanReverse(&r, x); return 31 - r; }
inline unsigned int __builtin_ffs(unsigned int x) { unsigned long r; return _BitScanForward(&r, x) ? r + 1 : 0; }
inline unsigned int __builtin_popcount(unsigned int x) { return __popcnt(x); }
#ifdef _WIN64
inline unsigned long long __builtin_ctzll(unsigned long long x) { unsigned long r; _BitScanForward64(&r, x); return r; }
inline unsigned long long __builtin_clzll(unsigned long long x) { unsigned long r; _BitScanReverse64(&r, x); return 63 - r; }
inline unsigned long long __builtin_ffsll(unsigned long long x) { unsigned long r; return _BitScanForward64(&r, x) ? r + 1 : 0; }
inline unsigned long long __builtin_popcountll(unsigned long long x) { return __popcnt64(x); }
#else
inline unsigned int hidword(unsigned long long x) { return static_cast<unsigned int>(x >> 32); }
inline unsigned int lodword(unsigned long long x) { return static_cast<unsigned int>(x & 0xFFFFFFFF); }
inline unsigned long long __builtin_ctzll(unsigned long long x) { return lodword(x) ? __builtin_ctz(lodword(x)) : __builtin_ctz(hidword(x)) + 32; }
inline unsigned long long __builtin_clzll(unsigned long long x) { return hidword(x) ? __builtin_clz(hidword(x)) : __builtin_clz(lodword(x)) + 32; }
inline unsigned long long __builtin_ffsll(unsigned long long x) { return lodword(x) ? __builtin_ffs(lodword(x)) : hidword(x) ? __builtin_ffs(hidword(x)) + 32 : 0; }
inline unsigned long long __builtin_popcountll(unsigned long long x) { return __builtin_popcount(lodword(x)) + __builtin_popcount(hidword(x)); }
#endif // _WIN64
#endif // _WIN32
#pragma pop_macro("long")
#endif // _MSC_VER
template<int MOD> struct ModInt {
static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
int get() const { return (int)x; }
ModInt& operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt& operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt& operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt& operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const {
long long a = x, b = MOD, u = 1, v = 0;
while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
return ModInt(u);
}
bool operator==(ModInt that) const { return x == that.x; }
bool operator!=(ModInt that) const { return x != that.x; }
ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r;
}
template<typename T, int FAC_MAX> struct Comb {
vector<T> fac, ifac;
Comb() {
fac.resize(FAC_MAX, 1); ifac.resize(FAC_MAX, 1); rep(i, 1, FAC_MAX)fac[i] = fac[i - 1] * i;
ifac[FAC_MAX - 1] = T(1) / fac[FAC_MAX - 1]; rrep(i, FAC_MAX - 2, 1)ifac[i] = ifac[i + 1] * T(i + 1);
}
T aPb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b]; }
T aCb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b] * ifac[b]; }
T nHk(int n, int k) {
if (n == 0 && k == 0) return T(1); if (n <= 0 || k < 0) return 0;
return aCb(n + k - 1, k);
} // nHk = (n+k-1)Ck : n is separator
T pairCombination(int n) { if (n % 2 == 1)return T(0); return fac[n] * ifac[n / 2] / (T(2) ^ (n / 2)); }
// combination of paris for n
};
typedef ModInt<1000000007> mint;
Comb<mint, 1010101> com;
template<typename T>
struct FormalPowerSeries {
using Poly = vector<T>;
using Conv = function<Poly(Poly, Poly)>;
Conv conv;
FormalPowerSeries(Conv conv) :conv(conv) {}
Poly pre(const Poly& as, int deg) {
return Poly(as.begin(), as.begin() + min((int)as.size(), deg));
}
Poly add(Poly as, Poly bs) {
int sz = max(as.size(), bs.size());
Poly cs(sz, T(0));
for (int i = 0; i < (int)as.size(); i++) cs[i] += as[i];
for (int i = 0; i < (int)bs.size(); i++) cs[i] += bs[i];
return cs;
}
Poly sub(Poly as, Poly bs) {
int sz = max(as.size(), bs.size());
Poly cs(sz, T(0));
for (int i = 0; i < (int)as.size(); i++) cs[i] += as[i];
for (int i = 0; i < (int)bs.size(); i++) cs[i] -= bs[i];
return cs;
}
Poly mul(Poly as, Poly bs) {
return conv(as, bs);
}
Poly mul(Poly as, T k) {
Poly res(all(as));
for (auto& a : res) a *= k;
return res;
}
// F(0) must not be 0
Poly inv(Poly as, int deg) {
assert(as[0] != T(0));
Poly rs({ T(1) / as[0] });
for (int i = 1; i < deg; i <<= 1)
rs = pre(sub(add(rs, rs), mul(mul(rs, rs), pre(as, i << 1))), i << 1);
return rs;
}
// not zero
Poly div(Poly as, Poly bs) {
while (as.back() == T(0)) as.pop_back();
while (bs.back() == T(0)) bs.pop_back();
if (bs.size() > as.size()) return Poly();
reverse(as.begin(), as.end());
reverse(bs.begin(), bs.end());
int need = as.size() - bs.size() + 1;
Poly ds = pre(mul(as, inv(bs, need)), need);
reverse(ds.begin(), ds.end());
return ds;
}
// F(0) must be 1
Poly sqrt(Poly as, int deg) {
assert(as[0] == T(1));
T inv2 = T(1) / T(2);
Poly ss({ T(1) });
for (int i = 1; i < deg; i <<= 1) {
ss = pre(add(ss, mul(pre(as, i << 1), inv(ss, i << 1))), i << 1);
for (T& x : ss) x *= inv2;
}
return ss;
}
Poly diff(Poly as) {
int n = as.size();
Poly res(n - 1);
for (int i = 1; i < n; i++) res[i - 1] = as[i] * T(i);
return res;
}
Poly integral(Poly as) {
int n = as.size();
Poly res(n + 1);
res[0] = T(0);
for (int i = 0; i < n; i++) res[i + 1] = as[i] / T(i + 1);
return res;
}
// F(0) must be 1
Poly log(Poly as, int deg) {
return pre(integral(mul(diff(as), inv(as, deg))), deg);
}
// F(0) must be 0
Poly exp(Poly as, int deg) {
Poly f({ T(1) });
as[0] += T(1);
for (int i = 1; i < deg; i <<= 1)
f = pre(mul(f, sub(pre(as, i << 1), log(f, i << 1))), i << 1);
return f;
}
Poly partition(int n) {
Poly rs(n + 1);
rs[0] = T(1);
for (int k = 1; k <= n; k++) {
if (1LL * k * (3 * k + 1) / 2 <= n) rs[k * (3 * k + 1) / 2] += T(k % 2 ? -1LL : 1LL);
if (1LL * k * (3 * k - 1) / 2 <= n) rs[k * (3 * k - 1) / 2] += T(k % 2 ? -1LL : 1LL);
}
return inv(rs, n + 1);
}
Poly catalan(int n) {
Poly rs(n + 1);
rs[0] = 1;
rep(i, 1, n + 1) rs[i] = com.aCb(2 * i, i) - com.aCb(2 * i, i - 1);
return rs;
}
// *(1-x^n)
Poly mul_1_minus_x_n(Poly as, int n) {
Poly res(all(as));
int m = res.size();
rrep(i, m - 1, n) res[i] -= res[i - n];
return res;
}
// /(1-x^n)
Poly div_1_minus_x_n(Poly as, int n) {
Poly res(all(as));
int m = res.size();
rep(i, n, m) res[i] += res[i - n];
return res;
}
// *(1+x+...+x^n)=*(1-x^(n+1))/(1-x)
Poly mul_1_plus_x_n(Poly as, int n) {
Poly p1 = mul_1_minus_x_n(as, n + 1);
return div_1_minus_x_n(p1, 1);
}
// /(1+x+...+x^n)=*(1-x)/(1-x^(n+1))
Poly div_1_plus_x_n(Poly as, int n) {
Poly p1 = mul_1_minus_x_n(as, 1);
return div_1_minus_x_n(p1, n + 1);
}
int getrandmax() {
static uint32_t y = time(NULL);
y ^= (y << 13); y ^= (y >> 17);
y ^= (y << 5);
return abs((int)y);
}
template<typename T2>
int jacobi(T2 a, T2 mod) {
int s = 1;
if (a < 0) a = a % mod + mod;
while (mod > 1) {
a %= mod;
if (a == 0) return 0;
int r = __builtin_ctz(a);
if ((r & 1) && ((mod + 2) & 4)) s = -s;
a >>= r;
if (a & mod & 2) s = -s;
swap(a, mod);
}
return s;
}
template<typename T2>
vector<T2> mod_sqrt(T2 a, T2 mod) {
if (mod == 2) return { a & 1 };
int j = jacobi(a, mod);
if (j == 0) return { 0 };
if (j == -1) return {};
ll b, d;
while (1) {
b = getrandmax() % mod;
d = (b * b - a) % mod;
if (d < 0) d += mod;
if (jacobi<ll>(d, mod) == -1) break;
}
ll f0 = b, f1 = 1, g0 = 1, g1 = 0;
for (ll e = (mod + 1) >> 1; e; e >>= 1) {
if (e & 1) {
ll tmp = (g0 * f0 + d * ((g1 * f1) % mod)) % mod;
g1 = (g0 * f1 + g1 * f0) % mod;
g0 = tmp;
}
ll tmp = (f0 * f0 + d * ((f1 * f1) % mod)) % mod;
f1 = (2 * f0 * f1) % mod;
f0 = tmp;
}
if (g0 > mod - g0) g0 = mod - g0;
return { T2(g0),T2(mod - g0) };
}
Poly super_sqrt(Poly from, int deg) {
deque<int> as(deg);
for (int i = 0; i < deg; i++) as[i] = from[i].get();
while (!as.empty() && as.front() == 0) as.pop_front();
if (as.empty()) {
Poly res(deg, 0);
return res;
}
int m = as.size();
if ((deg - m) & 1) {
return Poly();
}
auto ss = mod_sqrt(as[0], 998244353);
if (ss.empty()) return Poly();
vector<T> ps(deg, T(0));
for (int i = 0; i < m; i++) ps[i] = T(as[i]) / T(as[0]);
auto bs = sqrt(ps, deg);
bs.insert(bs.begin(), (deg - m) / 2, T(0));
Poly res(deg);
for (int i = 0; i < deg; i++) {
res[i] = bs[i] * ss[0];
}
return res;
}
};
#define FOR(i,n) for(int i = 0; i < (n); i++)
#define sz(c) ((int)(c).size())
#define ten(x) ((int)1e##x)
template<class T> T extgcd(T a, T b, T& x, T& y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b -= q * a, a); } return b; }
template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; }
ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }
struct MathsNTTModAny {
template<int mod, int primitive_root>
class NTT {
public:
int get_mod() const { return mod; }
void _ntt(vector<ll>& a, int sign) {
const int n = sz(a);
assert((n ^ (n & -n)) == 0); //n = 2^k
const int g = 3; //g is primitive root of mod
int h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1
if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod
//bit reverse
int i = 0;
for (int j = 1; j < n - 1; ++j) {
for (int k = n >> 1; k > (i ^= k); k >>= 1);
if (j < i) swap(a[i], a[j]);
}
for (int m = 1; m < n; m *= 2) {
const int m2 = 2 * m;
const ll base = mod_pow(h, n / m2, mod);
ll w = 1;
FOR(x, m) {
for (int s = x; s < n; s += m2) {
ll u = a[s];
ll d = a[s + m] * w % mod;
a[s] = u + d;
if (a[s] >= mod) a[s] -= mod;
a[s + m] = u - d;
if (a[s + m] < 0) a[s + m] += mod;
}
w = w * base % mod;
}
}
for (auto& x : a) if (x < 0) x += mod;
}
void ntt(vector<ll>& input) {
_ntt(input, 1);
}
void intt(vector<ll>& input) {
_ntt(input, -1);
const int n_inv = mod_inv(sz(input), mod);
for (auto& x : input) x = x * n_inv % mod;
}
vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {
int ntt_size = 1;
while (ntt_size < sz(a) + sz(b)) ntt_size *= 2;
vector<ll> _a = a, _b = b;
_a.resize(ntt_size); _b.resize(ntt_size);
ntt(_a);
ntt(_b);
FOR(i, ntt_size) {
(_a[i] *= _b[i]) %= mod;
}
intt(_a);
return _a;
}
};
ll garner(vector<pair<int, int>> mr, int mod) {
mr.emplace_back(mod, 0);
vector<ll> coffs(sz(mr), 1);
vector<ll> constants(sz(mr), 0);
FOR(i, sz(mr) - 1) {
// coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first)
ll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first;
if (v < 0) v += mr[i].first;
for (int j = i + 1; j < sz(mr); j++) {
(constants[j] += coffs[j] * v) %= mr[j].first;
(coffs[j] *= mr[i].first) %= mr[j].first;
}
}
return constants[sz(mr) - 1];
}
typedef NTT<167772161, 3> NTT_1;
typedef NTT<469762049, 3> NTT_2;
typedef NTT<1224736769, 3> NTT_3;
vector<ll> solve(vector<ll> a, vector<ll> b, int mod = 1000000007) {
for (auto& x : a) x %= mod;
for (auto& x : b) x %= mod;
NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
assert(ntt1.get_mod() < ntt2.get_mod() && ntt2.get_mod() < ntt3.get_mod());
auto x = ntt1.convolution(a, b);
auto y = ntt2.convolution(a, b);
auto z = ntt3.convolution(a, b);
const ll m1 = ntt1.get_mod(), m2 = ntt2.get_mod(), m3 = ntt3.get_mod();
const ll m1_inv_m2 = mod_inv<ll>(m1, m2);
const ll m12_inv_m3 = mod_inv<ll>(m1 * m2, m3);
const ll m12_mod = m1 * m2 % mod;
vector<ll> ret(sz(x));
FOR(i, sz(x)) {
ll v1 = (y[i] - x[i]) * m1_inv_m2 % m2;
if (v1 < 0) v1 += m2;
ll v2 = (z[i] - (x[i] + m1 * v1) % m3) * m12_inv_m3 % m3;
if (v2 < 0) v2 += m3;
ll constants3 = (x[i] + m1 * v1 + m12_mod * v2) % mod;
if (constants3 < 0) constants3 += mod;
ret[i] = constants3;
}
return ret;
}
vector<int> solve(vector<int> a, vector<int> b, int mod = 1000000007) {
vector<ll> x(all(a));
vector<ll> y(all(b));
auto z = solve(x, y, mod);
vector<int> res;
fore(aa, z) res.push_back(aa % mod);
return res;
}
vector<mint> solve(vector<mint> a, vector<mint> b, int mod = 1000000007) {
int n = a.size();
vector<ll> x(n);
rep(i, 0, n) x[i] = a[i].get();
n = b.size();
vector<ll> y(n);
rep(i, 0, n) y[i] = b[i].get();
auto z = solve(x, y, mod);
vector<mint> res;
fore(aa, z) res.push_back(aa);
return res;
}
};
/*---------------------------------------------------------------------------------------------------
∧_∧
∧_∧ (´<_` ) Welcome to My Coding Space!
( ´_ゝ`) / ⌒i @hamayanhamayan
/ \ | |
/ / ̄ ̄ ̄ ̄/ |
__(__ニつ/ _/ .| .|____
\/____/ (u ⊃
---------------------------------------------------------------------------------------------------*/
int k,n;
int a[100010];
//---------------------------------------------------------------------------------------------------
void _main() {
using T = mint;
FormalPowerSeries<T> FPS([&](auto a, auto b) {
MathsNTTModAny ntt;
return ntt.solve(a, b);
});
cin>>k>>n;
rep(i,0,n) cin>>a[i];
vector<T> p(k+10);
vector<T> q(k+10);
p[0] = q[0] = 1;
rep(i,0,n) {
p[a[i]]-=1;
}
p = FPS.inv(p,k+5);
cout<<p[k]<<endl; //p[K].get() じゃなくてもいいっぽい?
}
junppp