結果
問題 | No.213 素数サイコロと合成数サイコロ (3-Easy) |
ユーザー | maspy |
提出日時 | 2020-03-24 23:25:56 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 2,736 ms / 3,000 ms |
コード長 | 2,245 bytes |
コンパイル時間 | 185 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 44,836 KB |
最終ジャッジ日時 | 2024-06-10 09:30:46 |
合計ジャッジ時間 | 8,239 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,970 ms
44,332 KB |
testcase_01 | AC | 2,736 ms
44,836 KB |
ソースコード
#!/usr/bin/ python3.8 import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines import itertools import numpy as np MOD = 10 ** 9 + 7 N, P, C = map(int, read().split()) D1 = (2, 3, 5, 7, 11, 13) D2 = (4, 6, 8, 9, 10, 12) fP = np.zeros(13 * P + 1, np.int64) fC = np.zeros(12 * C + 1, np.int64) for S in itertools.combinations_with_replacement(D1, P): fP[sum(S)] += 1 for S in itertools.combinations_with_replacement(D2, C): fC[sum(S)] += 1 f = np.convolve(fP, fC) f.flags.writeable = False den = -f den[0] += 1 def fft_convolve(f, g, MOD=MOD): """ 数列 (多項式) f, g の畳み込みの計算.上下 15 bitずつ分けて計算することで, 30 bit以下の整数,長さ 250000 程度の数列での計算が正確に行える. """ fft = np.fft.rfft ifft = np.fft.irfft Lf = len(f) Lg = len(g) L = Lf + Lg - 1 fft_len = 1 << L.bit_length() fl = f & (1 << 15) - 1 fh = f >> 15 gl = g & (1 << 15) - 1 gh = g >> 15 def conv(f, g): return ifft(fft(f, fft_len) * fft(g, fft_len))[:L] x = conv(fl, gl) % MOD y = conv(fl + fh, gl + gh) % MOD z = conv(fh, gh) % MOD a, b, c = map(lambda x: (x + .5).astype(np.int64), [x, y, z]) return (a + ((b - a - c) << 15) + (c << 30)) % MOD def coef_of_generating_function(P, Q, N): """compute the coefficient [x^N] P/Q of rational power series. Parameters ---------- P : np.ndarray numerator. Q : np.ndarray denominator Q[0] == 1 and len(Q) == len(P) + 1 is assumed. N : int The coefficient to compute. """ def convolve(f, g): return fft_convolve(f, g, MOD) while N: Q1 = Q.copy() Q1[1::2] = np.negative(Q1[1::2]) if N & 1: P = convolve(P, Q1)[1::2] else: P = convolve(P, Q1)[::2] Q = convolve(Q, Q1)[::2] N >>= 1 return P[0] num = np.zeros(len(f) - 1, np.int64) num[0] = 1 coefs = [coef_of_generating_function(num, den, n) for n in range(N, N - len(f) - 10, -1) if n >= 0] answer = 0 for i, x in enumerate(f): answer += sum(coefs[1:i + 1]) % MOD * x % MOD print(answer % MOD)