結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | ningenMe |
提出日時 | 2020-03-29 03:06:10 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 3,236 bytes |
コンパイル時間 | 1,473 ms |
コンパイル使用メモリ | 159,700 KB |
最終ジャッジ日時 | 2024-11-14 22:14:33 |
合計ジャッジ時間 | 2,532 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_algo.h:65, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/algorithm:61, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:65, from main.cpp:1: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/uniform_int_dist.h: In instantiation of 'class std::uniform_int_distribution<__int128 unsigned>': main.cpp:43:65: required from here /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/uniform_int_dist.h:79:49: error: static assertion failed: template argument must be an integral type 79 | static_assert(std::is_integral<_IntType>::value, | ^~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/uniform_int_dist.h:79:49: note: 'std::integral_constant<bool, false>::value' evaluates to false
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define ALL(obj) (obj).begin(),(obj).end() #define SPEED cin.tie(0);ios::sync_with_stdio(false); template<class T> using PQ = priority_queue<T>; template<class T> using PQR = priority_queue<T,vector<T>,greater<T>>; constexpr long long MOD = (long long)1e9 + 7; constexpr long long MOD2 = 998244353; constexpr long long HIGHINF = (long long)1e18; constexpr long long LOWINF = (long long)1e15; constexpr long double PI = 3.1415926535897932384626433L; template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);} template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));} template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} template <template <class tmp> class T, class U> ostream &operator<<(ostream &o, const T<U> &obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr)o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} void print(void) {cout << endl;} template <class Head> void print(Head&& head) {cout << head;print();} template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);} template <class T> void chmax(T& a, const T b){a=max(a,b);} template <class T> void chmin(T& a, const T b){a=min(a,b);} void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} int MillerRabin(const __uint128_t N) { if (N <= 1) return 0; if (N == 2) return 1; __uint128_t M = N - 1,cnt = 0;; for (; M % 2 == 0; M /= 2,cnt++); mt19937 mt(time(NULL)); for (int k = 0; k < 10; k++) { __uint128_t a = uniform_int_distribution<__uint128_t>(2, N - 1)(mt), r = 1; for (__uint128_t K = M; K > 0; K >>= 1, (a *= a) %= N) if (K & 1) (r *= a) %= N; if (r == 1) continue; for (int i = 1; i < cnt && r != N - 1; i++) (r *= r) %= N; if (r != N - 1) return 0; } return 1; } int main() { long long N; cin >> N; vector<long long> A(N); for(int i = 0; i < N; ++i) cin >> A[i]; for(int i = 0; i < N; ++i) { cout << A[i] << " " << MillerRabin(A[i]) << endl; } return 0; }