結果
問題 | No.247 線形計画問題もどき |
ユーザー | ysuzuki5321 |
提出日時 | 2020-03-31 08:49:47 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 85 ms / 2,000 ms |
コード長 | 25,038 bytes |
コンパイル時間 | 1,961 ms |
コンパイル使用メモリ | 148,080 KB |
実行使用メモリ | 51,328 KB |
最終ジャッジ日時 | 2024-07-07 13:07:18 |
合計ジャッジ時間 | 4,658 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 73 ms
51,328 KB |
testcase_01 | AC | 69 ms
51,200 KB |
testcase_02 | AC | 82 ms
51,072 KB |
testcase_03 | AC | 67 ms
51,200 KB |
testcase_04 | AC | 69 ms
51,072 KB |
testcase_05 | AC | 69 ms
51,200 KB |
testcase_06 | AC | 74 ms
51,328 KB |
testcase_07 | AC | 71 ms
51,200 KB |
testcase_08 | AC | 69 ms
51,200 KB |
testcase_09 | AC | 69 ms
51,200 KB |
testcase_10 | AC | 67 ms
51,072 KB |
testcase_11 | AC | 66 ms
51,200 KB |
testcase_12 | AC | 73 ms
51,200 KB |
testcase_13 | AC | 71 ms
51,072 KB |
testcase_14 | AC | 70 ms
51,200 KB |
testcase_15 | AC | 67 ms
50,944 KB |
testcase_16 | AC | 70 ms
51,328 KB |
testcase_17 | AC | 73 ms
51,072 KB |
testcase_18 | AC | 71 ms
51,200 KB |
testcase_19 | AC | 78 ms
51,072 KB |
testcase_20 | AC | 79 ms
51,200 KB |
testcase_21 | AC | 67 ms
51,200 KB |
testcase_22 | AC | 69 ms
51,328 KB |
testcase_23 | AC | 69 ms
51,200 KB |
testcase_24 | AC | 85 ms
51,072 KB |
testcase_25 | AC | 79 ms
51,072 KB |
testcase_26 | AC | 71 ms
51,200 KB |
testcase_27 | AC | 71 ms
51,072 KB |
ソースコード
#include <stdio.h> #include <sstream> #include <iostream> #include <fstream> #include <string.h> #include <vector> #include <map> #include <algorithm> #include <utility> #include <set> #include <cctype> #include <queue> #include <stack> #include <cstdio> #include <cstdlib> #include <cmath> #include <deque> #include <limits> #include <iomanip> #include <ctype.h> #include <unordered_map> #include <random> #include <bitset> #define _USE_MATH_DEFINES #include <iostream> #include <math.h> #include <complex> using namespace std; typedef long long ll; typedef pair<int, int> pii; typedef pair<ll, ll> pll; typedef pair<ll, double> pld; typedef pair<double, double> pdd; typedef pair<double, ll> pdl; typedef pair<int, char> pic; typedef vector<ll> vl; typedef vector<int> vi; typedef priority_queue<ll, vector<ll>, greater<ll>> llgreaterq; typedef priority_queue<pll, vector<pll>, greater<pll>> pllgreaterq; typedef priority_queue<pair<ll, pll>, vector<pair<ll, pll>>, greater<pair<ll, pll>>> plpllgreaterq; typedef priority_queue<vi, vector<vi>, greater<vi>> vigreaterq; typedef priority_queue<vl, vector<vl>, greater<vl >> vlgreaterq; #define bit(x,v) ((ll)x << v) #define rep(x,v) for(ll x=0;x<v;x++) #define rep2(x,f,v) for(ll x=f;x<v;x++) // 許容する誤差ε #define EPS (1e-10) // 2つのスカラーが等しいかどうか #define EQ(a,b) (std::abs((a)-(b)) < EPS) // 2つのベクトルが等しいかどうか #define EQV(a,b) ( EQ((a).real(), (b).real()) && EQ((a).imag(), (b).imag()) ) #define all(a) a.begin(),a.end() #define all0(a) memset(a,0,sizeof(a)) const ll INF = 1000000007; const int MAX = 2000010; const int MOD = 1000000007; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } int pr[200010]; int lank[200010]; void uini(int n) { for (size_t i = 0; i <= n; i++) { pr[i] = i; } } int parent(int x) { if (x == pr[x]) return x; return pr[x] = parent(pr[x]); } int same(int x, int y) { return parent(x) == parent(y); } bool unit(int x, int y) { int px = parent(x); int py = parent(y); if (px == py) return false; if (lank[px] < lank[py]) { pr[py] = px; lank[px] += lank[py] + 1; } else { pr[px] = py; lank[py] += lank[px] + 1; } return true; } ll bit[200010]; int max_n = 200000; int pm = 0; void add(int x) { while (max_n >= x) { bit[x]++; x += x & -x; } } void sub(int x) { while (max_n >= x) { bit[x]--; x += x & -x; } } ll merge(ll* a, int left, int mid, int right) { ll n1 = mid - left; ll n2 = right - mid; vector<int> L(n1 + 1); vector<int> R(n2 + 1); for (size_t i = 0; i < n1; i++) { L[i] = a[left + i]; } for (size_t i = 0; i < n2; i++) { R[i] = a[mid + i]; } L[n1] = INF; R[n2] = INF; ll i = 0; ll j = 0; ll r = 0; for (size_t k = left; k < right; k++) { if (L[i] <= R[j]) { a[k] = L[i]; i++; } else { a[k] = R[j]; r += n1 - i; j++; } } return r; } ll merge2(pair<int, char>* a, int left, int mid, int right) { ll n1 = mid - left; ll n2 = right - mid; vector<pair<int, char>> L(n1 + 1); vector<pair<int, char>> R(n2 + 1); for (size_t i = 0; i < n1; i++) { L[i] = a[left + i]; } for (size_t i = 0; i < n2; i++) { R[i] = a[mid + i]; } L[n1] = make_pair(INF, ' '); R[n2] = make_pair(INF, ' '); ll i = 0; ll j = 0; ll r = 0; for (size_t k = left; k < right; k++) { if (L[i].first <= R[j].first) { a[k] = L[i]; i++; } else { a[k] = R[j]; r += n1 - i; j++; } } return r; } ll mergeSort2(pair<int, char>* a, int left, int right) { ll res = 0; if (left + 1 < right) { int mid = (left + right) / 2; res = mergeSort2(a, left, mid); res += mergeSort2(a, mid, right); res += merge2(a, left, mid, right); } return res; } ll mergeSort(ll* a, int left, int right) { ll res = 0; if (left + 1 < right) { int mid = (left + right) / 2; res = mergeSort(a, left, mid); res += mergeSort(a, mid, right); res += merge(a, left, mid, right); } return res; } int partition(pair<int, char>* a, int p, int r) { pair<int, char> x = a[r]; int i = p - 1; for (size_t j = p; j < r; j++) { if (a[j].first <= x.first) { i++; swap(a[i], a[j]); } } swap(a[i + 1], a[r]); return i + 1; } void quick(pair<int, char>* a, int p, int r) { if (p < r) { int q = partition(a, p, r); quick(a, p, q - 1); quick(a, q + 1, r); } } ll n; int ci = 0; ll P[1000010]; struct Node { int key; int priority; Node* parent, * left, * right; Node(int key, int priority); Node() {} }; Node NIL; Node::Node(int key, int priority) : key(key), priority(priority) { left = &NIL; right = &NIL; } Node* root = new Node(); void cenrec(Node* k) { if (k->key == NIL.key) return; cenrec(k->left); cout << " " << k->key; cenrec(k->right); } void fastrec(Node* k) { if (k->key == NIL.key) return; cout << " " << k->key; fastrec(k->left); fastrec(k->right); } void insert(Node* v) { Node* y = &NIL; Node* x = root; while (x->key != NIL.key) { y = x; if (v->key < x->key) { x = x->left; } else { x = x->right; } } v->parent = y; if (y->key == NIL.key) { root = v; } else if (v->key < y->key) { y->left = v; } else { y->right = v; } } Node* find(Node* k, ll v) { if (k->key == NIL.key) return &NIL; if (k->key == v) return k; if (v < k->key) return find(k->left, v); return find(k->right, v); } void delp12(Node* x) { if (x->key == NIL.key) return; Node* l = x->left; Node* r = x->right; Node* pr = x->parent; if (l->key == NIL.key && r->key == NIL.key) { if (pr->left == x) { pr->left = &NIL; } else pr->right = &NIL; } else if (l->key != NIL.key) { if (pr->left == x) { pr->left = l; } else pr->right = l; l->parent = pr; } else if (r->key != NIL.key) { if (pr->left == x) { pr->left = r; } else pr->right = r; r->parent = pr; } } Node* get_next(Node* k) { if (k->key == NIL.key) return &NIL; Node* res = get_next(k->left); if (res->key != NIL.key) return res; return k; } void del(Node* x) { if (x->key == NIL.key) return; Node* l = x->left; Node* r = x->right; Node* pr = x->parent; if (l->key != NIL.key && r->key != NIL.key) { Node* nex = get_next(r); x->key = nex->key; delp12(nex); } else { delp12(x); } } Node* rightRotate(Node* t) { Node* s = t->left; t->left = s->right; s->right = t; return s; } Node* leftRotate(Node* t) { Node* s = t->right; t->right = s->left; s->left = t; return s; } Node* _insert(Node* t, int key, int priority) { if (t->key == NIL.key) { return new Node(key, priority); } if (key == t->key) { return t; } if (key < t->key) { t->left = _insert(t->left, key, priority); if (t->priority < t->left->priority) { t = rightRotate(t); } } else { t->right = _insert(t->right, key, priority); if (t->priority < t->right->priority) { t = leftRotate(t); } } return t; } Node* delete1(Node* t, int key); Node* _delete(Node* t, int key) { if (t->left->key == NIL.key && t->right->key == NIL.key) { return &NIL; } else if (t->left->key == NIL.key) { t = leftRotate(t); } else if (t->right->key == NIL.key) { t = rightRotate(t); } else { if (t->left->priority > t->right->priority) { t = rightRotate(t); } else t = leftRotate(t); } return delete1(t, key); } Node* delete1(Node* t, int key) { if (t->key == NIL.key) { return &NIL; } if (key < t->key) { t->left = delete1(t->left, key); } else if (key > t->key) { t->right = delete1(t->right, key); } else return _delete(t, key); return t; } int H; int left(int i) { return i * 2 + 1; } int right(int i) { return i * 2 + 2; } ll heap[2000010]; void maxHeapify(int i) { int l = left(i); int r = right(i); int largest = 0; if (l < H && heap[l] > heap[i]) largest = l; else largest = i; if (r < H && heap[r] > heap[largest]) largest = r; if (largest != i) { swap(heap[i], heap[largest]); maxHeapify(largest); } } int pare(int i) { return (i - 1) / 2; } void raise(int i) { int l = pare(i); if (l < 0) return; if (heap[l] < heap[i]) { swap(heap[i], heap[l]); raise(l); } } void minHeapify(int i) { int l = left(i); int r = right(i); int minimam = 0; if (l < H && heap[l] < heap[i]) minimam = l; else minimam = i; if (r < H && heap[r] < heap[minimam]) minimam = r; if (minimam != i) { swap(heap[i], heap[minimam]); minHeapify(minimam); } } void buildMaxHeap() { for (int i = H / 2; i >= 0; i--) { maxHeapify(i); } } int dx[] = { -1,0,1,0 }; int dy[] = { 0,-1,0,1 }; std::vector<int> find_all(const std::string str, const std::string subStr) { std::vector<int> result; int subStrSize = subStr.size(); int pos = str.find(subStr); while (pos != std::string::npos) { result.push_back(pos); pos = str.find(subStr, pos + 1); } return result; } //ll memo[100010]; //ll next[100010]; //ll dm[100010]; //int f[100010]; //ll rec(int x) { // // if (~memo[x]) return memo[x]; // if (x == n) { // dm[n] = 1; // return 1; // } // ll *res = &memo[x]; // *res = 0; // set<int> st; // st.insert(f[x]); // for (int i = x + 1; i <= n; i++) // { // if (~memo[i]) { // *res += memo[i] + 1; // *res %= INF; // break; // } // // *res += rec(i); // *res %= INF; // if (st.find(f[i]) != st.end()) {break; } // st.insert(f[i]); // } // // return *res; //} #define bit(x,v) ((ll)x << v) class BIT { static const int MAX_N = 1000010; public: BIT() { memset(bit, 0, sizeof(bit)); } int bit[MAX_N + 1], n; int sum(int i) { int s = 0; while (i > 0) { s += bit[i]; i -= i & -i; } return s; } void add(int i, int x) { while (i <= n) { bit[i] += x; i += i & -i; } } void clear() { memset(bit, 0, sizeof(bit)); } int a[MAX_N]; void bable_swap_count() { ll ans = 0; for (size_t j = 0; j < n; j++) { ans += j - sum(a[j]); add(a[j], 1); } printf("%lld\n", ans); } int search(int s, int x) { ll half = (s + x) / 2; ll sh = sum(x); ll sl = sum(half); ll st = sum(s); if (sh - sl == 0) { return x; } if (sh - sl < x - half) { return search(half, x); } if (sl - st == 0) { return half; } if (sl - st < half - s) { return search(s, half); } return -1; } int lankSearch(int lank) { return lankSearch(lank, 0, MAX_N); } int lankSearch(int lank, int s, int t) { ll half = (s + t) / 2; ll v = sum(half); ll v1 = sum(t); ll v2 = sum(s); if (lank == 1) { if (s + 1 >= t) return t; else if (v - v2 > 0) { return lankSearch(lank, s, half); } else return lankSearch(lank, half, t); } if ((v - v2) < lank) { return lankSearch(lank - (v - v2), half, t); } if ((v - v2) >= lank) { return lankSearch(lank, s, half); } return -1; } }; class BIT2 { static const int MAX_N = 1000010; public: BIT2() { memset(bit, 0, sizeof(bit)); } ll bit[MAX_N + 1], n; ll gmax(int i) { ll s = 0; while (i > 0) { s = max(bit[i], s); i -= i & -i; } return s; } void add(int i, ll x) { while (i <= n) { bit[i] = max(bit[i], x); i += i & -i; } } void clear() { memset(bit, 0, sizeof(bit)); } }; vector<ll> getp(ll n) { vector<ll> res; ll a = 2; if (n % 2 == 0) { res.push_back(2); while (n % 2 == 0)n /= 2; } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { res.push_back(i); while (n % i == 0)n /= i; } } if (n != 1) res.push_back(n); return res; } vector<ll> getp2(ll n) { vector<ll> res; ll a = 2; if (n % 2 == 0) { while (n % 2 == 0) { n /= 2; res.push_back(2); } } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { while (n % i == 0) { n /= i; res.push_back(i); } } } if (n != 1) res.push_back(n); return res; } vector<pll> getp3(ll n) { vector<pll> res; ll a = 2; int cnt = 0; if (n % 2 == 0) { res.push_back(make_pair(2, 0)); while (n % 2 == 0) { n /= 2; res[cnt].second++; } cnt++; } for (ll i = 3; i * i <= n; i += 2) { if (n % i == 0) { res.push_back(make_pair(i, 0)); while (n % i == 0) { n /= i; res[cnt].second++; } cnt++; } } if (n != 1) res.push_back(make_pair(n, 1)); return res; } vector<ll> getDivisors(ll n) { vector<ll> res; ll a = 2; res.push_back(1); for (ll i = 2; i * i <= n; i++) { if (n % i == 0) { res.push_back(i); if (n / i != i) res.push_back(n / i); } } return res; } struct ve { public: vector<ve> child; int _t = INF; ve(int t) :_t(t) {} ve(ve _left, ve _right) { _t = _left._t + _right._t; child.push_back(_left); child.push_back(_right); } bool operator<(const ve& t) const { return _t > t._t; } }; vector<bool> elas(ll n) { vector<bool> r(n); for (ll i = 3; i < n; i += 2) { r[i] = 1; } r[0] = 0; r[1] = 0; r[2] = 1; for (ll i = 3; i * i < n; i += 2) { if (!r[i]) continue; ll ti = i * 2; while (ti < n) { r[ti] = false; ti += i; } } return r; } bool isprime(ll v) { for (ll i = 2; i * i <= v; i++) { if (v % i == 0) return false; } return true; } ll lcm(vector<ll> v) { if (v.size() == 0) return 0; ll t = v[0]; for (size_t i = 1; i < v.size(); i++) { t = v[i] * t / gcd(v[i], t); } return t; } ll eulerphi(ll n) { auto p = getp(n); double u = n; for (auto v : p) { u *= (double)(v - 1) / (double)v; } return u; } double revs(double x) { ll dig = 0; stringstream st; st << std::fixed << setprecision(0) << x; string v = st.str(); reverse(v.begin(), v.end()); return stod(v); } bool chkparindrome(double x) { stringstream st; st << std::fixed << setprecision(0) << x; string p = st.str(); for (size_t i = 0; i < p.size() / 2; i++) { if (p[i] != p[p.size() - i - 1]) { return false; } } return true; } ll digitC(double x) { stringstream st; st << fixed << setprecision(0) << x; return st.str().size(); } ll digitSum(double x) { stringstream st; st << std::fixed << x; string p = st.str(); ll rs = 0; for (size_t i = 0; i < p.size(); i++) { if (p[i] == '.') break; rs += p[i] - '0'; } return rs; } pdd recs(int x) { if (x == 0) return make_pair(1, 2); pdd d = recs(x - 1); auto nu = d.second * 2.0 + d.first; auto de = d.second; return make_pair(de, nu); } ll caldig(ll a) { ll r = 0; while (a > 0) { a /= 10; r++; } return r; } int chav(char v) { if (v <= 'Z') return v - 'A'; return v - 'a' + 26; } char itoch(int i) { if (i < 26) return i + 'A'; return (i - 26) + 'a'; } int crmp[1000][1000]; int countR(ll base, ll x, ll y, int deep) { if (~crmp[x][y]) { return deep - crmp[x][y]; } crmp[x][y] = deep; double nu = sqrt(base) + x; double de = (base - (x * x)) / y; ll u = nu / de; ll nx = x - (u * de); return countR(base, -nx, de, deep + 1); } bool isPermutation(ll x, ll y) { int c1[10]; int c2[10]; memset(c1, 0, sizeof(c1)); memset(c2, 0, sizeof(c2)); while (x > 0) { c1[x % 10]++; x /= 10; } while (y > 0) { c2[y % 10]++; y /= 10; } for (size_t i = 0; i < 10; i++) { if (c1[i] != c2[i]) return false; } return true; } double heron(ll a, ll b, ll c) { double s = (double)(a + b + c) / 2.0; return sqrt(s * (s - a) * (s - b) * (s - c)); } double calcThreePS(double x1, double y1, double x2, double y2, double x3, double y3) { return abs((x1 * y2 + x2 * y3 + x3 * y1 - y1 * x2 - y2 * x3 - y3 * x1) / 2.0); } typedef vector<vl> mat; class Matrix1 { public: static const int M = INF; int n; mat mul(mat& A, mat& B) { mat C(A.size(), vl(B[0].size())); for (size_t i = 0; i < A.size(); i++) { for (size_t k = 0; k < B.size(); k++) { for (size_t j = 0; j < B[0].size(); j++) { C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % M; } } } return C; } mat pow(mat A, ll n) { mat B(A.size(), vl(A.size())); for (size_t i = 0; i < A.size(); i++) { B[i][i] = 1; } while (n > 0) { if (n & 1) B = mul(B, A); A = mul(A, A); n >>= 1; } return B; } }; ll m; ll stringDivRm(string s, ll k) { ll v = 0; for (size_t i = 0; i < s.size(); i++) { v *= 10; v += s[i] - '0'; v %= k; } return v; } ll repPow(ll b, ll x,ll md) { ll res = 1; ll v = b; while (x > 0) { if (x & 1) { res *= v; res %= md; } v *= v; v %= md; x >>= 1; } return res; } ll repPow(ll b, ll x) { return repPow(b, x, INF); } ll uar[1000010]; ll upr(ll u, ll r) { return (fac[u] * finv[u-r]) % INF; } ll partitionMemo[20010][110]; ll partitionNum(ll v, ll k) { if (k == 1) return 1; if (v <= 1) return 1; if (~partitionMemo[v][k]) return partitionMemo[v][k]; ll r = 0; if (v < k) { r = partitionNum(v,v); } else r = partitionNum(v, k - 1) + partitionNum(v - k, k); r %= INF; return partitionMemo[v][k] = r; } class SetTree1 { public: static const int MAX_N = 100000; static const int MAX_Q = 100000; int N, Q; static const int DAT_SIZE = (1 << 18) - 1; int A[MAX_N]; char T[MAX_Q]; ll data[DAT_SIZE]; void init(int _n) { memset(data, 0, sizeof(data)); int p = 1; while (p < _n) { p <<= 1; } N = p; Q = N - 1; } void update(int a, int b) { for (size_t i = a; i <= b; i++) { update(Q + i); } } void update(int a) { int x = data[a]; while (a > 0) { if (a % 2 == 0)a--; a >>= 1; data[a] += x; } } void add(int a, int b, int x) { add(a, b + 1, x, 0,0,N); } void add(int a, int b, int x, int k, int l, int r) { if (a <= l && r <= b) { data[k] += x; } else if (l < b && a < r) { data[k] += (min(b, r) - max(a, l)) * x; add(a, b, x, k * 2 + 1, l, (l + r) / 2); add(a, b, x, k * 2 + 2, (l + r) / 2, r); } } ll sum(int a, int b) { return sum(a, b + 1, 0, 0, N); } ll sum(int a, int b, int k, int l, int r) { if (b <= l || r <= a) return 0; else if (a <= l && r <= b) { return data[k]; } else { ll res = 0; res += sum(a, b, k * 2 + 1, l, (l + r) / 2); res += sum(a, b, k * 2 + 2, (l + r) / 2, r); return res; } } }; class Segment; class Circle; class Point { public: double x, y; Point(double x = 0, double y = 0) :x(x), y(y) {} Point operator + (Point p) { return Point(x + p.x, y + p.y); } Point operator - (Point p) { return Point(x - p.x, y - p.y); } Point operator * (double a) { return Point(a * x, a * y); } Point operator / (double a) { return Point(x / a, y / a); } double abs() { return sqrt(norm()); } double norm() { return x * x + y * y; } bool operator < (const Point& p)const { return x != p.x ? x < p.x : y < p.y; } bool operator == (const Point& p) const { return fabs(x - p.x) < EPS && fabs(y - p.y) < EPS; } static double dot(Point a, Point b) { return a.x * b.x + a.y * b.y; } static double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; } static bool isOrthogonal(Point a, Point b) { return EQ(dot(a, b), 0.0); } static bool isOrthogonal(Point a1, Point a2, Point b1, Point b2) { return isOrthogonal(a1 - a2, b1 - b2); } static bool isOrthogonal(Segment s1, Segment s2); static bool isPalallel(Point a, Point b) { return EQ(cross(a, b), 0.0); } static bool isPalallel(Point a1, Point a2, Point b1, Point b2) { return isPalallel(a1 - a2, b1 - b2); } static bool isPalallel(Segment s1, Segment s2); static const int COUNTER_CLOCKWISE = 1; static const int CLOCKWISE = -1; static const int ONLINE_BACK = 2; static const int ONLINE_FRONT = -2; static const int ON_SEGMENT = 0; static int ccw(Point p0, Point p1, Point p2) { Point a = p1 - p0; Point b = p2 - p0; if (cross(a, b) > EPS) return COUNTER_CLOCKWISE; if (cross(a, b) < -EPS) return CLOCKWISE; if (dot(a, b) < -EPS) return ONLINE_BACK; if (a.norm() < b.norm()) return ONLINE_FRONT; return ON_SEGMENT; } static bool intersect(Point p1, Point p2, Point p3, Point p4) { return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0); } static bool intersect(Segment s1, Segment s2); static Point project(Segment s, Point p); static Point reflect(Segment s, Point p); static Point getDistance(Point a, Point b) { return (a - b).abs(); } static double getDistanceLP(Segment s, Point p); static double getDistanceSP(Segment s, Point p); static double getDistance(Segment s1, Segment s2); static Point getIntersection(Segment s1, Segment s2); static pair<Point, Point> crossPoints(Circle c, Segment s); static int contains(vector<Point> g, Point p) { int n = g.size(); bool x = false; rep(i, n) { Point a = g[i] - p, b = g[(i + 1) % n] - p; // 線の上に載っているか if (std::abs(cross(a, b)) < EPS && dot(a, b) < EPS) return 1; // pを基準として上下にあるか // または外積が正か?(→にあるか) if (a.y > b.y) swap(a, b); if (a.y < EPS && EPS < b.y && cross(a, b) > EPS) x = !x; } return x ? 2 : 0; } static vector<Point> andrewScan(vector<Point> s) { vector<Point> u, l; if (s.size() < 3) return s; sort(all(s)); u.push_back(s[0]); u.push_back(s[1]); l.push_back(s[s.size() - 1]); l.push_back(s[s.size() - 2]); for (int i = 2; i < s.size(); i++) { for (int _n = u.size(); _n >= 2 && ccw(u[_n - 2], u[_n - 1], s[i]) != CLOCKWISE; _n--) { u.pop_back(); } u.push_back(s[i]); } for (int i = s.size() - 3; i >= 0; i--) { for (int _n = l.size(); _n >= 2 && ccw(l[_n - 2], l[_n - 1], s[i]) != CLOCKWISE; _n--) { l.pop_back(); } l.push_back(s[i]); } reverse(all(l)); for (int i = u.size() - 2; i >= 1; i--) { l.push_back(u[i]); } return l; } static double getArea(vector<Point> g) { double res = 0; rep(i, n) { int ne = (i + 1) % n; res += cross(g[i], g[ne]); } return res / 2.0; } }; class Segment { public: Point p1, p2; Segment() {} Segment(Point p1, Point p2) :p1(p1), p2(p2) {} Point p1tp2() { return p2 - p1; } Point p2tp1() { return p1 - p2; } double norm() { return (p2 - p1).norm(); } }; bool Point::isOrthogonal(Segment s1, Segment s2) { return EQ(dot(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0); } bool Point::isPalallel(Segment s1, Segment s2) { return EQ(cross(s1.p2 - s1.p1, s2.p2 - s2.p1), 0.0); } bool Point::intersect(Segment s1, Segment s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); } Point Point::project(Segment s, Point p) { Point base = s.p2 - s.p1; double r = Point::dot(p - s.p1, base) / base.norm(); return s.p1 + base * r; } Point Point::reflect(Segment s, Point p) { return (project(s, p) * 2) - p; } double Point::getDistanceLP(Segment s, Point p) { return std::abs(cross(s.p2 - s.p1, p - s.p1) / (s.p2 - s.p1).abs()); } double Point::getDistanceSP(Segment s, Point p) { if (dot(s.p2 - s.p1, p - s.p1) < 0.0) return (p - s.p1).abs(); if (dot(s.p1 - s.p2, p - s.p2) < 0.0) return (p - s.p2).abs(); return getDistanceLP(s, p); } double Point::getDistance(Segment s1, Segment s2) { if (intersect(s1, s2)) return 0.0; return min({ getDistanceSP(s1,s2.p1),getDistanceSP(s1,s2.p2) ,getDistanceSP(s2,s1.p1),getDistanceSP(s2,s1.p2) }); } Point Point::getIntersection(Segment s1, Segment s2) { // (s1.p1 - s2.p1).norm() auto bs = s1.p2 - s1.p1; auto n1 = s2.p1 - s1.p1; auto n2 = s2.p2 - s1.p1; auto c1 = std::abs(cross(n1, bs)) / bs.norm(); auto c2 = std::abs(cross(n2, bs)) / bs.norm(); return s2.p1 + (s2.p2 - s2.p1) * (c1 / (c1 + c2)); // c1:c2=t:1-t // c2t=(1-t)c1 // t/(1-t)=c1/(c1+c2) // } double arg(Point p) { return atan2(p.y, p.x); } Point polar(double a, double r) { return Point(cos(r) * a, sin(r) * a); } class Circle { public: Point c; double r; Circle(Point c = Point(), double r = 0.0) : c(c), r(r) {} static pair<Point, Point> getCrossPoints(Circle c1, Circle c2) { double d = (c1.c - c2.c).abs(); // 中心点どうしの距離 double a = acos((c1.r * c1.r + d * d - c2.r * c2.r) / (2 * c1.r * d)); double t = arg(c2.c - c1.c); return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a)); } }; pair<Point, Point> Point::crossPoints(Circle c, Segment s) { auto pp = project(s, c.c); auto f = (pp - c.c).norm(); auto mu = sqrt(c.r * c.r - f); auto e = s.p1tp2() / s.p1tp2().abs(); return make_pair(pp + e * mu, pp - e * mu); } ll count(vector<ll> v, ll x) { ll res = 0; ll si = v.size(); rep(i, v.size()) { ll p = lower_bound(all(v), x / v[i] + (x % v[i] > 0 ? 1 : 0)) - v.begin(); if (i < p) p--; res += max(p - i,0LL); } return res; } void solv() { ll c; cin >> c; cin >> n; ll a[110]; rep(i, n)cin >> a[i]; ll dp[100010]; memset(dp, -1, sizeof(dp)); dp[0] = 0; rep(i, n) { ll v = a[i]; rep(j, c + 1) { if (dp[j] == -1)continue; for (ll k = j + v; k <= c; k += c) { if (dp[k] == -1 || dp[k] > dp[k-v]+1) { dp[k] = dp[k - v] + 1; } else if (dp[k] <= dp[k - v] + 1) break; } } } cout << dp[c] << endl; } int main() { COMinit(); solv(); return 0; }