結果
問題 | No.487 2017 Calculation(2017の計算) |
ユーザー |
![]() |
提出日時 | 2020-04-02 07:33:46 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 11,721 bytes |
コンパイル時間 | 1,983 ms |
コンパイル使用メモリ | 136,020 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-28 01:10:11 |
合計ジャッジ時間 | 2,568 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 16 |
コンパイルメッセージ
main.cpp:28: warning: "M_PI" redefined 28 | #define M_PI 3.1415926535897932L; | In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/cmath:45, from main.cpp:10: /usr/include/math.h:1151: note: this is the location of the previous definition 1151 | # define M_PI 3.14159265358979323846 /* pi */ |
ソースコード
#include<iostream>#include<vector>#include<set>#include<queue>#include<map>#include<algorithm>#include<cstring>#include<string>#include<cassert>#include<cmath>#include<climits>#include<iomanip>#include<stack>#include<unordered_map>#include<bitset>#include<limits>#include<complex>#include<array>using namespace std;#define rrep(i,m,n) for(int (i)=(int)(m);(i)>=(int)(n);(i)--)#define rep(i,m,n) for(int (i)=(int)(m);i<(int)(n);i++)#define REP(i,n) rep(i,0,n)#define FOR(i,c) for(decltype((c).begin())i=(c).begin();i!=(c).end();++i)#define ll long long#define ull unsigned long long#define all(hoge) (hoge).begin(),(hoge).end()#define M_PI 3.1415926535897932L;typedef pair<ll, ll> P;constexpr ll MOD = 1000000007;constexpr ll INF = 1LL << 60;constexpr long double EPS = 1e-10;typedef vector<ll> Array;typedef vector<Array> Matrix;string operator*(const string& s, int k) {if (k == 0) return "";string p = (s + s) * (k / 2);if (k % 2 == 1) p += s;return p;}template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b;return true;}return false;}template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b;return true;}return false;}struct Edge {//グラフll to, cap, rev;Edge(ll _to, ll _cap, ll _rev) {to = _to; cap = _cap; rev = _rev;}};typedef vector<Edge> Edges;typedef vector<Edges> Graph;void add_edge(Graph& G, ll from, ll to, ll cap, bool revFlag, ll revCap) {//最大フロー求める Ford-fulkersonG[from].push_back(Edge(to, cap, (ll)G[to].size()));if (revFlag)G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1));//最小カットの場合逆辺は0にする}ll max_flow_dfs(Graph& G, ll v, ll t, ll f, vector<bool>& used){if (v == t)return f;used[v] = true;for (int i = 0; i < G[v].size(); ++i) {Edge& e = G[v][i];if (!used[e.to] && e.cap > 0) {ll d = max_flow_dfs(G, e.to, t, min(f, e.cap), used);if (d > 0) {e.cap -= d;G[e.to][e.rev].cap += d;return d;}}}return 0;}//二分グラフの最大マッチングを求めたりも出来る また二部グラフの最大独立集合は頂点数-最大マッチングのサイズll max_flow(Graph& G, ll s, ll t)//O(V(V+E)){ll flow = 0;for (;;) {vector<bool> used(G.size());REP(i, used.size())used[i] = false;ll f = max_flow_dfs(G, s, t, INF, used);if (f == 0) {return flow;}flow += f;}}void BellmanFord(Graph& G, ll s, Array& d, Array& negative) {//O(|E||V|)d.resize(G.size());negative.resize(G.size());REP(i, d.size())d[i] = INF;REP(i, d.size())negative[i] = false;d[s] = 0;REP(k, G.size() - 1) {REP(i, G.size()) {REP(j, G[i].size()) {if (d[i] != INF && d[G[i][j].to] > d[i] + G[i][j].cap) {d[G[i][j].to] = d[i] + G[i][j].cap;}}}}REP(k, G.size() - 1) {REP(i, G.size()) {REP(j, G[i].size()) {if (d[i] != INF && d[G[i][j].to] > d[i] + G[i][j].cap) {d[G[i][j].to] = d[i] + G[i][j].cap;negative[G[i][j].to] = true;}if (negative[i] == true)negative[G[i][j].to] = true;}}}}void Dijkstra(Graph& G, ll s, Array& d) {//O(|E|log|V|)d.resize(G.size());REP(i, d.size())d[i] = INF;d[s] = 0;priority_queue<P, vector<P>, greater<P>> q;q.push(make_pair(0, s));while (!q.empty()) {P a = q.top();q.pop();if (d[a.second] < a.first)continue;REP(i, G[a.second].size()) {Edge e = G[a.second][i];if (d[e.to] > d[a.second] + e.cap) {d[e.to] = d[a.second] + e.cap;q.push(make_pair(d[e.to], e.to));}}}}void WarshallFloyd(Graph& G, Matrix& d) {//O(V^3)d.resize(G.size());REP(i, d.size())d[i].resize(G.size());REP(i, d.size()) {REP(j, d[i].size()) {d[i][j] = ((i != j) ? INF : 0);}}REP(i, G.size()) {REP(j, G[i].size()) {chmin(d[i][G[i][j].to], G[i][j].cap);}}REP(i, G.size()) {REP(j, G.size()) {REP(k, G.size()) {chmin(d[j][k], d[j][i] + d[i][k]);}}}}bool tsort(Graph& graph, vector<int>& order) {//トポロジカルソートO(E+V)int n = graph.size(), k = 0;Array in(n);for (auto& es : graph)for (auto& e : es)in[e.to]++;priority_queue<ll, Array, greater<ll>> que;REP(i, n)if (in[i] == 0)que.push(i);while (que.size()) {int v = que.top();que.pop();order.push_back(v);for (auto& e : graph[v])if (--in[e.to] == 0)que.push(e.to);}if (order.size() != n)return false;else return true;}class lca {public:const int n = 0;const int log2_n = 0;std::vector<std::vector<int>> parent;std::vector<int> depth;lca() {}lca(const Graph& g, int root): n(g.size()), log2_n(log2(n) + 1), parent(log2_n, std::vector<int>(n)), depth(n) {dfs(g, root, -1, 0);for (int k = 0; k + 1 < log2_n; k++) {for (int v = 0; v < (int)g.size(); v++) {if (parent[k][v] < 0)parent[k + 1][v] = -1;elseparent[k + 1][v] = parent[k][parent[k][v]];}}}void dfs(const Graph& g, int v, int p, int d) {parent[0][v] = p;depth[v] = d;for (auto& e : g[v]) {if (e.to != p) dfs(g, e.to, v, d + 1);}}int get(int u, int v) {if (depth[u] > depth[v]) std::swap(u, v);for (int k = 0; k < log2_n; k++) {if ((depth[v] - depth[u]) >> k & 1) {v = parent[k][v];}}if (u == v) return u;for (int k = log2_n - 1; k >= 0; k--) {if (parent[k][u] != parent[k][v]) {u = parent[k][u];v = parent[k][v];}}return parent[0][u];}};void visit(const Graph& g, int v, Matrix& scc, stack<ll>& S, Array& inS, Array& low, Array& num, int& time) {low[v] = num[v] = ++time;S.push(v); inS[v] = true;FOR(e, g[v]) {int w = e->to;if (num[w] == 0) {visit(g, w, scc, S, inS, low, num, time);low[v] = min(low[v], low[w]);}else if (inS[w])low[v] = min(low[v], num[w]);}if (low[v] == num[v]) {scc.push_back(Array());while (1) {int w = S.top(); S.pop(); inS[w] = false;scc.back().push_back(w);if (v == w) break;}}}void stronglyConnectedComponents(const Graph& g, Matrix& scc) {//強連結成分分解 O(E+V)const int n = g.size();Array num(n), low(n);stack<ll> S;Array inS(n);int time = 0;REP(u, n) if (num[u] == 0)visit(g, u, scc, S, inS, low, num, time);}class UnionFind {vector<int> data;ll num;public:UnionFind(int size) : data(size, -1), num(size) { }bool unite(int x, int y) {//xとyの集合を統合するx = root(x); y = root(y);if (x != y) {if (data[y] < data[x]) swap(x, y);data[x] += data[y]; data[y] = x;}num -= (x != y);return x != y;}bool findSet(int x, int y) {//xとyが同じ集合か返すreturn root(x) == root(y);}int root(int x) {//xのルートを返すreturn data[x] < 0 ? x : data[x] = root(data[x]);}ll size(int x) {//xの集合のサイズを返すreturn -data[root(x)];}ll numSet() {//集合の数を返すreturn num;}};template<typename T, typename F>class SegmentTree {private:T identity;F merge;ll n;vector<T> dat;public:SegmentTree(F f, T id,vector<T> v) :merge(f), identity(id) {int _n = v.size();n = 1;while (n < _n)n *= 2;dat.resize(2 * n - 1, identity);REP(i, _n)dat[n + i - 1] = v[i];for (int i = n - 2; i >= 0; i--)dat[i] = merge(dat[i * 2 + 1], dat[i * 2 + 2]);}void set_val(int i, T x) {i += n - 1;dat[i] = x;while (i > 0) {i = (i - 1) / 2;dat[i] = merge(dat[i * 2 + 1], dat[i * 2 + 2]);}}T query(int l, int r) {T left = identity, right = identity;l += n - 1; r += n - 1;while (l < r) {if ((l & 1) == 0)left = merge(left, dat[l]);if ((r & 1) == 0)right = merge(dat[r - 1], right);l = l / 2;r = (r - 1) / 2;}return merge(left, right);}};class SumSegTree {public:ll n, height;vector<ll> dat;// 初期化(_nは最大要素数)SumSegTree(ll _n) {n = 1;height = 1;while (n < _n) {n *= 2;height++;}dat = vector<ll>(2 * n - 1, 0);}// 場所i(0-indexed)にxを足すvoid add(ll i, ll x) {i += n - 1; // i番目の葉ノードへdat[i] += x;while (i > 0) { // 下から上がっていくi = (i - 1) / 2;dat[i] += x;}}// 区間[l,r)の総和ll sum(ll l, ll r) {ll ret = 0;l += n - 1; r += n - 1;while (l < r) {if ((l & 1) == 0)ret += dat[l];if ((r & 1) == 0)ret += dat[r - 1];l = l / 2;r = (r - 1) / 2;}return ret;}};class RmqTree {private:ll _find(ll a, ll b, ll k, ll l, ll r) {if (r <= a || b <= l)return INF; // 交差しないif (a <= l && r <= b)return dat[k]; // a,l,r,bの順で完全に含まれるelse {ll s1 = _find(a, b, 2 * k + 1, l, (l + r) / 2); // 左の子ll s2 = _find(a, b, 2 * k + 2, (l + r) / 2, r); // 右の子return min(s1, s2);}}public:ll n, height;vector<ll> dat;// 初期化(_nは最大要素数)RmqTree(ll _n) {n = 1;height = 1;while (n < _n) {n *= 2;height++;}dat = vector<ll>(2 * n - 1, INF);}// 場所i(0-indexed)をxにするvoid update(ll i, ll x) {i += n - 1; // i番目の葉ノードへdat[i] = x;while (i > 0) { // 下から上がっていくi = (i - 1) / 2;dat[i] = min(dat[i * 2 + 1], dat[i * 2 + 2]);}}// 区間[a,b)の最小値。ノードk=[l,r)に着目している。ll find(ll a, ll b) {return _find(a, b, 0, 0, n);}};//約数求める //約数void divisor(ll n, vector<ll>& ret) {for (ll i = 1; i * i <= n; i++) {if (n % i == 0) {ret.push_back(i);if (i * i != n) ret.push_back(n / i);}}sort(ret.begin(), ret.end());}void prime_factorization(ll n, vector<P>& ret) {for (ll i = 2; i * i <= n; i++) {if (n % i == 0) {ret.push_back({ i,0 });while (n % i == 0) {n /= i;ret[ret.size() - 1].second++;}}}if (n != 1)ret.push_back({ n,1 });}ll mod_pow(ll x, ll n, ll mod) {ll res = 1;while (n > 0) {if (n & 1) res = res * x % mod;x = x * x % mod;n >>= 1;}return res;}ll mod_inv(ll x, ll mod) {return mod_pow(x, mod - 2, mod);}//nCrとかclass Combination {public:Array fact;Array inv;ll mod;ll mod_inv(ll x) {ll n = mod - 2LL;ll res = 1LL;while (n > 0) {if (n & 1) res = res * x % mod;x = x * x % mod;n >>= 1;}return res;}//if n >= mod use lucasll nCr(ll n, ll r) {if (n < r)return 0;if (n < mod)return ((fact[n] * inv[r] % mod) * inv[n - r]) % mod;ll ret = 1;while (n || r) {ll _n = n % mod, _r = r % mod;n /= mod; r /= mod;(ret *= nCr(_n, _r)) %= mod;}return ret;}ll nPr(ll n, ll r) {return (fact[n] * inv[n - r]) % mod;}ll nHr(ll n, ll r) {return nCr(r + n - 1, r);}Combination(ll _n, ll _mod) {mod = _mod;ll n = min(_n + 1, mod);fact.resize(n);fact[0] = 1;REP(i, n - 1) {fact[i + 1] = (fact[i] * (i + 1LL)) % mod;}inv.resize(n);inv[n - 1] = mod_inv(fact[n - 1]);for (int i = n - 1; i > 0; i--) {inv[i - 1] = inv[i] * i % mod;}}};ll gcd(ll m, ll n) {if (n == 0)return m;return gcd(n, m % n);}//gcdll lcm(ll m, ll n) {return m / gcd(m, n) * n;}ll popcount(ll x) {x = (x & 0x5555555555555555) + (x >> 1 & 0x5555555555555555);x = (x & 0x3333333333333333) + (x >> 2 & 0x3333333333333333);x = (x & 0x0F0F0F0F0F0F0F0F) + (x >> 4 & 0x0F0F0F0F0F0F0F0F);x = (x & 0x00FF00FF00FF00FF) + (x >> 8 & 0x00FF00FF00FF00FF);x = (x & 0x0000FFFF0000FFFF) + (x >> 16 & 0x0000FFFF0000FFFF);x = (x & 0x00000000FFFFFFFF) + (x >> 32 & 0x00000000FFFFFFFF);return x;}int main() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);ll n;cin >> n;ll ans =2017 + mod_pow(2017 * 2017, 2017, n);cout << ans % n << "\n";return 0;}