結果

問題 No.718 行列のできるフィボナッチ数列道場 (1)
ユーザー TAISA_TAISA_
提出日時 2020-04-05 00:40:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 4,786 bytes
コンパイル時間 2,269 ms
コンパイル使用メモリ 210,552 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-03 07:51:35
合計ジャッジ時間 3,268 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 2 ms
6,940 KB
testcase_13 AC 2 ms
6,944 KB
testcase_14 AC 3 ms
6,944 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 2 ms
6,940 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 3 ms
6,940 KB
testcase_19 AC 2 ms
6,944 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 2 ms
6,940 KB
testcase_22 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define all(vec) vec.begin(), vec.end()
#define eb emplace_back
using namespace std;
using ll = long long;
using P = pair<ll, ll>;
constexpr ll INF = (1LL << 30) - 1LL;
constexpr ll MOD = 1e9 + 7;
template <class T>
void chmin(T &a, T b) { a = min(a, b); }
template <class T>
void chmax(T &a, T b) { a = max(a, b); }
void ok() { cerr << "ok" << endl; }
//from http://noshi91.hatenablog.com/entry/2019/03/31/174006
template <std::uint_fast64_t Modulus>
class modint {
    using u64 = std::uint_fast64_t;

  public:
    u64 a;
    constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
    constexpr u64 &value() noexcept { return a; }
    constexpr const u64 &value() const noexcept { return a; }
    constexpr modint operator+(const modint rhs) const noexcept {
        return modint(*this) += rhs;
    }
    constexpr modint operator-(const modint rhs) const noexcept {
        return modint(*this) -= rhs;
    }
    constexpr modint operator*(const modint rhs) const noexcept {
        return modint(*this) *= rhs;
    }
    constexpr modint operator/(const modint rhs) const noexcept {
        return modint(*this) /= rhs;
    }
    constexpr modint operator^(const u64 rhs) const noexcept {
        return modint(*this) ^= rhs;
    }
    constexpr modint &operator+=(const modint rhs) noexcept {
        a += rhs.a;
        if (a >= Modulus) {
            a -= Modulus;
        }
        return *this;
    }
    constexpr modint &operator-=(const modint rhs) noexcept {
        if (a < rhs.a) {
            a += Modulus;
        }
        a -= rhs.a;
        return *this;
    }
    constexpr modint &operator*=(const modint rhs) noexcept {
        a = a * rhs.a % Modulus;
        return *this;
    }
    constexpr modint &operator/=(modint rhs) noexcept {
        u64 exp = Modulus - 2;
        while (exp) {
            if (exp % 2) {
                *this *= rhs;
            }
            rhs *= rhs;
            exp /= 2;
        }
        return *this;
    }
    constexpr modint &operator^=(u64 exp) {
        modint rhs = modint(*this);
        a = 1;
        while (exp) {
            if (exp % 2) {
                *this *= rhs;
            }
            rhs *= rhs;
            exp /= 2;
        }
        return *this;
    }
};
using mint = modint<MOD>;
template <class T>
struct Matrix {
    vector<vector<T>> a;
    Matrix() {}
    Matrix(int n, int m) : a(n, vector<T>(m)) {}
    inline const vector<T> &operator[](int k) const {
        return a.at(k);
    }
    inline vector<T> &operator[](int k) {
        return a.at(k);
    }
    Matrix I(int n) {
        Matrix mat(n, n);
        for (int i = 0; i < n; i++) {
            mat[i][i] = 1;
        }
        return mat;
    }
    Matrix &operator+=(const Matrix &rhs) {
        for (int i = 0; i < a.size(); i++) {
            for (int j = 0; j < a[i].size(); j++) {
                (*this)[i][j] += rhs[i][j];
            }
        }
        return (*this);
    }
    Matrix &operator-=(const Matrix &rhs) {
        for (int i = 0; i < a.size(); i++) {
            for (int j = 0; j < a[i].size(); j++) {
                (*this)[i][j] -= rhs[i][j];
            }
        }
        return (*this);
    }
    Matrix &operator*=(const Matrix &rhs) {
        int n = a.size(), m = a[0].size(), p = rhs[0].size();
        assert(m == rhs.a.size());
        vector<vector<T>> b(n, vector<T>(p));
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < p; j++) {
                for (int k = 0; k < m; k++) {
                    b[i][j] += (*this)[i][k] * rhs[k][j];
                }
            }
        }
        swap(a, b);
        return (*this);
    }
    Matrix &operator^=(const long long &rhs) {
        long long n = rhs;
        Matrix res = Matrix::I(a.size());
        while (n > 0) {
            if (n & 1) {
                res *= (*this);
            }
            (*this) *= (*this);
            n >>= 1;
        }
        swap(a, res.a);
        return (*this);
    }
    Matrix operator+(const Matrix &rhs) const {
        return Matrix(*this) += rhs;
    }
    Matrix operator-(const Matrix &rhs) const {
        return Matrix(*this) -= rhs;
    }
    Matrix operator*(const Matrix &rhs) const {
        return Matrix(*this) *= rhs;
    }
    Matrix operator^(const long long &rhs) const {
        return Matrix(*this) ^= rhs;
    }
};
int main() {
    cin.tie(0);
    ios::sync_with_stdio(0);
    ll n;
    cin >> n;
    Matrix<mint> a(6, 6), b(6, 1), res(6, 1);
    b[1][0] = 1, b[3][0] = 1, b[5][0] = 1;
    a[0][1] = 1, a[1][0] = 1, a[1][1] = 1, a[2][3] = 1, a[3][2] = 1;
    a[3][3] = 1, a[3][4] = 2, a[4][3] = 1, a[4][4] = 1, a[5][2] = 1, a[5][3] = 1, a[5][4] = 2, a[5][5] = 1;
    res = (a ^ (n - 1LL)) * b;
    cout << res[5][0].a << endl;
}
0