結果
問題 | No.502 階乗を計算するだけ |
ユーザー | rsk0315 |
提出日時 | 2020-04-08 03:05:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 20,236 bytes |
コンパイル時間 | 429 ms |
コンパイル使用メモリ | 59,776 KB |
最終ジャッジ日時 | 2024-11-14 22:17:20 |
合計ジャッジ時間 | 892 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
test/yc_502.test.cpp: In function 'int main()': test/yc_502.test.cpp:10:3: error: 'scanf' was not declared in this scope test/yc_502.test.cpp:11:3: error: 'printf' was not declared in this scope test/yc_502.test.cpp:1:1: note: 'printf' is defined in header '<cstdio>'; did you forget to '#include <cstdio>'?
ソースコード
#line 1 "test/yc_502.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/502" #line 1 "ModularArithmetic/modint.cpp" /** * @brief 合同算術用クラス * @author えびちゃん */ #include <cstdint> #include <type_traits> #include <utility> template <intmax_t Modulo> class modint { public: using value_type = intmax_t; private: static constexpr value_type S_cmod = Modulo; // compile-time static value_type S_rmod; // runtime value_type M_value = 0; static constexpr value_type S_inv(value_type n, value_type m) { value_type x = 0; value_type y = 1; value_type a = n; value_type b = m; for (value_type u = y, v = x; a;) { value_type q = b / a; std::swap(x -= q*u, u); std::swap(y -= q*v, v); std::swap(b -= q*a, a); } if ((x %= m) < 0) x += m; return x; } static value_type S_normalize(value_type n, value_type m) { if (n >= m) { n %= m; } else if (n < 0) { if ((n %= m) < 0) n += m; } return n; } public: modint() = default; modint(value_type n): M_value(S_normalize(n, get_modulo())) {} modint& operator =(value_type n) { M_value = S_normalize(n, get_modulo()); return *this; } modint& operator +=(modint const& that) { if ((M_value += that.M_value) >= get_modulo()) M_value -= get_modulo(); return *this; } modint& operator -=(modint const& that) { if ((M_value -= that.M_value) < 0) M_value += get_modulo(); return *this; } modint& operator *=(modint const& that) { (M_value *= that.M_value) %= get_modulo(); return *this; } modint& operator /=(modint const& that) { (M_value *= S_inv(that.M_value, get_modulo())) %= get_modulo(); return *this; } modint operator +(modint const& that) const { return modint(*this) += that; } modint operator -(modint const& that) const { return modint(*this) -= that; } modint operator *(modint const& that) const { return modint(*this) *= that; } modint operator /(modint const& that) const { return modint(*this) /= that; } modint operator +() const { return *this; } modint operator -() const { if (M_value == 0) return *this; return modint(get_modulo() - M_value); } bool operator ==(modint const& that) const { return M_value == that.M_value; } bool operator !=(modint const& that) const { return !(*this == that); } value_type get() const { return M_value; } static value_type get_modulo() { return ((S_cmod > 0)? S_cmod: S_rmod); } template <int M = Modulo, typename Tp = typename std::enable_if<(M <= 0)>::type> static Tp set_modulo(value_type m) { S_rmod = m; } }; template <typename Tp, intmax_t Modulo> modint<Modulo> operator +(Tp const& lhs, modint<Modulo> const& rhs) { return rhs + lhs; } template <typename Tp, intmax_t Modulo> modint<Modulo> operator -(Tp const& lhs, modint<Modulo> const& rhs) { return -(rhs - lhs); } template <typename Tp, intmax_t Modulo> modint<Modulo> operator *(Tp const& lhs, modint<Modulo> const& rhs) { return rhs * lhs; } template <typename Tp, intmax_t Modulo> modint<Modulo> operator /(Tp const& lhs, modint<Modulo> const& rhs) { return modint<Modulo>(lhs) / rhs; } template <typename Tp, intmax_t Modulo> bool operator ==(Tp const& lhs, modint<Modulo> const& rhs) { return rhs == lhs; } template <typename Tp, intmax_t Modulo> bool operator !=(Tp const& lhs, modint<Modulo> const& rhs) { return !(lhs == rhs); } template <intmax_t N> constexpr intmax_t modint<N>::S_cmod; template <intmax_t N> intmax_t modint<N>::S_rmod; #line 1 "ModularArithmetic/factorial.cpp" /** * @brief 階乗の高速計算 * @author えびちゃん */ #include <algorithm> #include <vector> #line 1 "ModularArithmetic/modtable.cpp" /** * @brief 合同演算の前計算テーブル * @author えびちゃん */ #include <cstddef> #line 11 "ModularArithmetic/modtable.cpp" template <typename ModInt> class modtable { public: using value_type = ModInt; using size_type = size_t; using underlying_type = typename ModInt::value_type; private: std::vector<value_type> M_f, M_i, M_fi; public: modtable() = default; explicit modtable(underlying_type n): M_f(n+1), M_i(n+1), M_fi(n+1) { M_f[0] = 1; for (underlying_type i = 1; i <= n; ++i) M_f[i] = M_f[i-1] * i; underlying_type mod = M_f[0].get_modulo(); M_i[1] = 1; for (underlying_type i = 2; i <= n; ++i) M_i[i] = -value_type(mod / i) * M_i[mod % i]; M_fi[0] = 1; for (underlying_type i = 1; i <= n; ++i) M_fi[i] = M_fi[i-1] * M_i[i]; } value_type inverse(underlying_type n) const { return M_i[n]; } value_type factorial(underlying_type n) const { return M_f[n]; } value_type factorial_inverse(underlying_type n) const { return M_fi[n]; } value_type binom(underlying_type n, underlying_type k) const { if (n < 0 || n < k || k < 0) return 0; // assumes n < mod return M_f[n] * M_fi[k] * M_fi[n-k]; } }; #line 1 "ModularArithmetic/polynomial.cpp" /** * @brief 多項式 * @author えびちゃん */ #line 10 "ModularArithmetic/polynomial.cpp" #include <climits> #line 13 "ModularArithmetic/polynomial.cpp" #line 1 "integer/bit.cpp" /** * @brief ビット演算 * @author えびちゃん */ #line 10 "integer/bit.cpp" #include <type_traits> // #ifdef __has_builtin int clz(unsigned n) { return __builtin_clz(n); } int clz(unsigned long n) { return __builtin_clzl(n); } int clz(unsigned long long n) { return __builtin_clzll(n); } int ctz(unsigned n) { return __builtin_ctz(n); } int ctz(unsigned long n) { return __builtin_ctzl(n); } int ctz(unsigned long long n) { return __builtin_ctzll(n); } int popcount(unsigned n) { return __builtin_popcount(n); } int popcount(unsigned long n) { return __builtin_popcountl(n); } int popcount(unsigned long long n) { return __builtin_popcountll(n); } // #else // TODO: implement // #endif template <typename Tp> auto clz(Tp n) -> typename std::enable_if<std::is_signed<Tp>::value, int>::type { return clz(static_cast<typename std::make_unsigned<Tp>::type>(n)); } template <typename Tp> auto ctz(Tp n) -> typename std::enable_if<std::is_signed<Tp>::value, int>::type { return ctz(static_cast<typename std::make_unsigned<Tp>::type>(n)); } template <typename Tp> auto popcount(Tp n) -> typename std::enable_if<std::is_signed<Tp>::value, int>::type { return popcount(static_cast<typename std::make_unsigned<Tp>::type>(n)); } template <typename Tp> int parity(Tp n) { return popcount(n) & 1; } template <typename Tp> int ilog2(Tp n) { return (CHAR_BIT * sizeof(Tp) - 1) - clz(static_cast<typename std::make_unsigned<Tp>::type>(n)); } template <typename Tp> bool is_pow2(Tp n) { return (n > 0) && ((n & (n-1)) == 0); } template <typename Tp> Tp floor2(Tp n) { if (is_pow2(n)) return n; return Tp(1) << ilog2(n); } template <typename Tp> Tp ceil2(Tp n) { if (is_pow2(n)) return n; return Tp(2) << ilog2(n); } template <typename Tp> Tp reverse(Tp n) { static constexpr Tp b1 = static_cast<Tp>(0x5555555555555555); static constexpr Tp b2 = static_cast<Tp>(0x3333333333333333); static constexpr Tp b4 = static_cast<Tp>(0x0F0F0F0F0F0F0F0F); static constexpr Tp b8 = static_cast<Tp>(0x00FF00FF00FF00FF); static constexpr Tp bx = static_cast<Tp>(0x0000FFFF0000FFFF); n = ((n & b1) << 1) | ((n >> 1) & b1); n = ((n & b2) << 2) | ((n >> 2) & b2); n = ((n & b4) << 4) | ((n >> 4) & b4); n = ((n & b8) << 8) | ((n >> 8) & b8); n = ((n & bx) << 16) | ((n >> 16) & bx); if ((sizeof n) > 4) n = (n << 32) | (n >> 32); return n; } #line 1 "ModularArithmetic/garner.cpp" /** * @brief Garner's algorithm * @author えびちゃん */ #line 10 "ModularArithmetic/garner.cpp" #include <tuple> #line 12 "ModularArithmetic/garner.cpp" class simultaneous_congruences_garner { public: using value_type = intmax_t; using size_type = size_t; private: value_type M_mod = 1; value_type M_sol = 0; std::vector<value_type> M_c, M_m; static auto S_gcd_bezout(value_type a, value_type b) { value_type x{1}, y{0}; for (value_type u{y}, v{x}; b != 0;) { value_type q{a/b}; std::swap(x -= q*u, u); std::swap(y -= q*v, v); std::swap(a -= q*b, b); } return std::make_tuple(a, x, y); } public: simultaneous_congruences_garner() = default; void push(value_type a, value_type m) { if (M_c.empty()) { M_c.push_back(a); M_m.push_back(m); return; } value_type c = M_c.back(); value_type mi = M_m.back(); for (size_type i = M_c.size()-1; i--;) { c = (c * M_m[i] + M_c[i]) % m; (mi *= M_m[i]) %= m; } c = (a-c) * std::get<1>(S_gcd_bezout(mi, m)) % m; if (c < 0) c += m; M_c.push_back(c); M_m.push_back(m); } auto get(value_type m) const { value_type x = M_c.back() % m; for (size_type i = M_c.size()-1; i--;) { x = (x * M_m[i] + M_c[i]) % m; } return x; } }; #line 17 "ModularArithmetic/polynomial.cpp" template <typename ModInt> class polynomial { public: using size_type = size_t; using value_type = ModInt; private: std::vector<value_type> M_f; void M_normalize() { while (!M_f.empty() && M_f.back() == 0) M_f.pop_back(); } static value_type S_omega() { auto p = value_type{}.get_modulo(); // for p = (u * 2**e + 1) with generator g, returns g ** u mod p if (p == 998244353 /* (119 << 23 | 1 */) return 15311432; // g = 3 if (p == 163577857 /* (39 << 22 | 1) */) return 121532577; // g = 23 if (p == 167772161 /* (5 << 25 | 1) */) return 243; // g = 3 if (p == 469762049 /* (7 << 26 | 1) */) return 2187; // g = 3 return 0; // XXX } void M_fft(bool inverse = false) { size_type il = ilog2(M_f.size()); for (size_type i = 1; i < M_f.size(); ++i) { size_type j = reverse(i) >> ((CHAR_BIT * sizeof(size_type)) - il); if (i < j) std::swap(M_f[i], M_f[j]); } size_type zn = ctz(M_f[0].get_modulo()-1); // pow_omega[i] = omega ^ (2^i) std::vector<value_type> pow_omega(zn+1, 1); pow_omega[0] = S_omega(); if (inverse) pow_omega[0] = 1 / pow_omega[0]; for (size_type i = 1; i < pow_omega.size(); ++i) pow_omega[i] = pow_omega[i-1] * pow_omega[i-1]; for (size_type i = 1, ii = zn-1; i < M_f.size(); i <<= 1, --ii) { value_type omega(1); for (size_type jl = 0, jr = i; jr < M_f.size();) { auto x = M_f[jl]; auto y = M_f[jr] * omega; M_f[jl] = x + y; M_f[jr] = x - y; ++jl, ++jr; if ((jl & i) == i) { jl += i, jr += i, omega = 1; } else { omega *= pow_omega[ii]; } } } if (inverse) { value_type n1 = value_type(1) / M_f.size(); for (auto& c: M_f) c *= n1; } } void M_ifft() { M_fft(true); } void M_naive_multiplication(polynomial const& that) { size_type deg = M_f.size() + that.M_f.size() - 1; std::vector<value_type> res(deg, 0); for (size_type i = 0; i < M_f.size(); ++i) for (size_type j = 0; j < that.M_f.size(); ++j) res[i+j] += M_f[i] * that.M_f[j]; M_f = std::move(res); M_normalize(); } void M_naive_division(polynomial that) { size_type deg = M_f.size() - that.M_f.size(); std::vector<value_type> res(deg+1); for (size_type i = deg+1; i--;) { value_type c = M_f[that.M_f.size()+i-1] / that.M_f.back(); res[i] = c; for (size_type j = 0; j < that.M_f.size(); ++j) M_f[that.M_f.size()+i-j-1] -= c * that.M_f[that.M_f.size()-j-1]; } M_f = std::move(res); M_normalize(); } void M_arbitrary_modulo_convolve(polynomial that) { size_type n = M_f.size() + that.M_f.size() - 1; std::vector<intmax_t> f(n, 0), g(n, 0); for (size_type i = 0; i < M_f.size(); ++i) f[i] = M_f[i].get(); for (size_type i = 0; i < that.M_f.size(); ++i) g[i] = that.M_f[i].get(); polynomial<modint<998244353>> f1(f.begin(), f.end()), g1(g.begin(), g.end()); polynomial<modint<163577857>> f2(f.begin(), f.end()), g2(g.begin(), g.end()); polynomial<modint<167772161>> f3(f.begin(), f.end()), g3(g.begin(), g.end()); f1 *= g1; f2 *= g2; f3 *= g3; M_f.resize(n); for (size_type i = 0; i < n; ++i) { simultaneous_congruences_garner scg; scg.push(f1[i].get(), 998244353); scg.push(f2[i].get(), 163577857); scg.push(f3[i].get(), 167772161); M_f[i] = scg.get(value_type::get_modulo()); } M_normalize(); } polynomial(size_type n, value_type x): M_f(n, x) {} // not normalized public: polynomial() = default; template <typename InputIt> polynomial(InputIt first, InputIt last): M_f(first, last) { M_normalize(); } polynomial(std::initializer_list<value_type> il): polynomial(il.begin(), il.end()) {} polynomial inverse(size_type m) const { // XXX only for friendly moduli polynomial res{1 / M_f[0]}; for (size_type d = 1; d < m; d *= 2) { polynomial f(d+d, 0), g(d+d, 0); for (size_type j = 0; j < d+d; ++j) f.M_f[j] = (*this)[j]; for (size_type j = 0; j < d; ++j) g.M_f[j] = res.M_f[j]; f.M_fft(); g.M_fft(); for (size_type j = 0; j < d+d; ++j) f.M_f[j] *= g.M_f[j]; f.M_ifft(); for (size_type j = 0; j < d; ++j) { f.M_f[j] = 0; f.M_f[j+d] = -f.M_f[j+d]; } f.M_fft(); for (size_type j = 0; j < d+d; ++j) f.M_f[j] *= g.M_f[j]; f.M_ifft(); for (size_type j = 0; j < d; ++j) f.M_f[j] = res.M_f[j]; res = std::move(f); } res.M_f.erase(res.M_f.begin()+m, res.M_f.end()); return res; } std::vector<value_type> multipoint_evaluate(std::vector<value_type> const& xs) const { size_type m = xs.size(); size_type m2 = ceil2(m); std::vector<polynomial> g(m2+m2, {1}); for (size_type i = 0; i < m; ++i) g[m2+i] = {-xs[i], 1}; for (size_type i = m2; i-- > 1;) g[i] = g[i<<1|0] * g[i<<1|1]; g[1] = (*this) % g[1]; for (size_type i = 2; i < m2+m; ++i) g[i] = g[i>>1] % g[i]; std::vector<value_type> ys(m); for (size_type i = 0; i < m; ++i) ys[i] = g[m2+i][0]; return ys; } void differentiate() { for (size_type i = 0; i+1 < M_f.size(); ++i) M_f[i] = (i+1) * M_f[i+1]; if (!M_f.empty()) M_f.pop_back(); } void integrate(value_type c = 0) { // for (size_type i = 0; i < M_f.size(); ++i) M_f[i] /= i+1; size_type n = M_f.size(); std::vector<value_type> inv(n+1, 1); auto mod = value_type::get_modulo(); for (size_type i = 2; i <= n; ++i) inv[i] = -value_type(mod / i).get() * inv[mod % i]; for (size_type i = 0; i < n; ++i) M_f[i] *= inv[i+1]; if (!(c == 0 && M_f.empty())) M_f.insert(M_f.begin(), c); } polynomial& operator +=(polynomial const& that) { if (M_f.size() < that.M_f.size()) M_f.resize(that.M_f.size(), 0); for (size_type i = 0; i < that.M_f.size(); ++i) M_f[i] += that.M_f[i]; M_normalize(); return *this; } polynomial& operator -=(polynomial const& that) { if (M_f.size() < that.M_f.size()) M_f.resize(that.M_f.size(), 0); for (size_type i = 0; i < that.M_f.size(); ++i) M_f[i] -= that.M_f[i]; M_normalize(); return *this; } polynomial& operator *=(polynomial that) { if (zero() || that.zero()) { M_f.clear(); return *this; } if (that.M_f.size() == 1) { // scalar multiplication auto m = that.M_f[0]; for (auto& c: M_f) c *= m; return *this; } if (M_f.size() + that.M_f.size() <= 64) { M_naive_multiplication(that); return *this; } size_type n = ceil2(M_f.size() + that.M_f.size() - 1); if (ctz(n) > ctz(value_type::get_modulo()-1)) { M_arbitrary_modulo_convolve(std::move(that)); return *this; } M_f.resize(n, 0); that.M_f.resize(n, 0); M_fft(); that.M_fft(); for (size_type i = 0; i < n; ++i) M_f[i] *= that.M_f[i]; M_ifft(); M_normalize(); return *this; } polynomial& operator /=(polynomial that) { if (M_f.size() < that.M_f.size()) { M_f[0] = 0; M_f.erase(M_f.begin()+1, M_f.end()); return *this; } if (that.M_f.size() == 1) { // scalar division value_type d = 1 / that.M_f[0]; for (auto& c: M_f) c *= d; return *this; } if (that.M_f.size() <= 256) { M_naive_division(that); return *this; } size_type deg = M_f.size() - that.M_f.size() + 1; std::reverse(M_f.begin(), M_f.end()); std::reverse(that.M_f.begin(), that.M_f.end()); *this *= that.inverse(deg); M_f.resize(deg); std::reverse(M_f.begin(), M_f.end()); M_normalize(); return *this; } polynomial& operator %=(polynomial that) { if (M_f.size() < that.M_f.size()) return *this; *this -= *this / that * that; return *this; } polynomial operator +(polynomial const& that) const { return polynomial(*this) += that; } polynomial operator -(polynomial const& that) const { return polynomial(*this) -= that; } polynomial operator *(polynomial const& that) const { return polynomial(*this) *= that; } polynomial operator /(polynomial const& that) const { return polynomial(*this) /= that; } polynomial operator %(polynomial const& that) const { return polynomial(*this) %= that; } value_type const operator [](size_type i) const { return ((i < M_f.size())? M_f[i]: 0); } value_type operator ()(value_type x) const { value_type y = 0; for (size_type i = M_f.size(); i--;) y = y * x + M_f[i]; return y; } bool zero() const noexcept { return M_f.empty(); } size_type degree() const { return M_f.size()-1; } // XXX deg(0) void fft(size_type n = 0) { if (n) M_f.resize(n, value_type{0}); M_fft(); } void ifft(size_type n = 0) { if (n) M_f.resize(n, value_type{0}); M_ifft(); } }; #line 1 "integer/sqrt.cpp" /** * @brief 整数の平方根 * @author えびちゃん */ #line 10 "integer/sqrt.cpp" template <typename Tp> Tp isqrt(Tp n) { if (n <= 1) return n; Tp lb = 1; Tp ub = static_cast<Tp>(1) << (CHAR_BIT * (sizeof(Tp) / 2)); while (ub-lb > 1) { Tp mid = (lb+ub) >> 1; ((mid*mid <= n)? lb: ub) = mid; } return lb; } #line 17 "ModularArithmetic/factorial.cpp" template <intmax_t Mod> modint<Mod> factorial(intmax_t n) { if (n == 0) return 1; if (n >= Mod) return 0; intmax_t v = ceil2(isqrt(n)); using value_type = modint<Mod>; modtable<value_type> mt(v); std::vector<value_type> g{1, v+1}; for (intmax_t d = 1; d < v; d <<= 1) { std::vector<value_type> a(d+1); for (intmax_t i = 0; i <= d; ++i) { a[i] = g[i] * mt.factorial_inverse(i) * mt.factorial_inverse(d-i); if ((d-i) % 2 != 0) a[i] = -a[i]; } auto shift = [&](intmax_t m0) { m0 = (value_type(m0) / v).get(); intmax_t m = std::max(m0, d+1); std::vector<value_type> b(d+1), c(d+1); for (intmax_t i = 0; i <= d; ++i) { b[i] = value_type{1} / (m+i); c[d-i] = value_type{1} / (m-i-1); } polynomial<value_type> fa(a.begin(), a.end()), fb(b.begin(), b.end()), fc(c.begin(), c.end()); fb *= fa, fc *= fa; std::vector<value_type> res(d+1); value_type mul = 1; for (int j = 0; j <= d; ++j) mul *= m-j; for (int k = 0; k <= d; ++k) { res[k] = (fb[k] + fc[k+d+1]) * mul; if (k < d) mul *= value_type(m+k+1) / value_type(m+k-d); } if (m0 <= d) { for (intmax_t i = m0; i--;) res[d-(m0-i-1)] = res[i]; for (intmax_t i = m0; i <= d; ++i) res[i-m0] = g[i]; } return res; }; std::vector<value_type> gd = shift(d); std::vector<value_type> gdv = shift(d*v); std::vector<value_type> gdvd = shift(d*v+d); g.resize(2*d+1); for (intmax_t i = 0; i < d; ++i) g[i] *= gd[i]; for (intmax_t i = 0; i <= d; ++i) g[d+i] = gdv[i] * gdvd[i]; } value_type res = 1; intmax_t i = 0; for (size_t j = 0; i+v <= n && j < g.size(); i += v, ++j) res *= g[j]; for (++i; i <= n; ++i) res *= i; return res; } #line 5 "test/yc_502.test.cpp" constexpr intmax_t mod = 1000'000'007; int main() { intmax_t n; scanf("%jd", &n); printf("%jd\n", factorial<mod>(n).get()); }