結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | hashiryo |
提出日時 | 2020-04-09 09:58:13 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,193 ms / 2,000 ms |
コード長 | 15,928 bytes |
コンパイル時間 | 2,247 ms |
コンパイル使用メモリ | 184,480 KB |
実行使用メモリ | 126,152 KB |
最終ジャッジ日時 | 2024-10-05 13:37:44 |
合計ジャッジ時間 | 24,658 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,193 ms
126,076 KB |
testcase_01 | AC | 1,162 ms
125,900 KB |
testcase_02 | AC | 1,164 ms
125,836 KB |
testcase_03 | AC | 1,157 ms
126,060 KB |
testcase_04 | AC | 1,161 ms
126,024 KB |
testcase_05 | AC | 1,173 ms
126,120 KB |
testcase_06 | AC | 1,185 ms
126,048 KB |
testcase_07 | AC | 1,148 ms
125,840 KB |
testcase_08 | AC | 1,164 ms
125,848 KB |
testcase_09 | AC | 1,120 ms
125,964 KB |
testcase_10 | AC | 1,172 ms
125,944 KB |
testcase_11 | AC | 1,162 ms
125,992 KB |
testcase_12 | AC | 1,138 ms
126,016 KB |
testcase_13 | AC | 1,177 ms
125,940 KB |
testcase_14 | AC | 1,139 ms
126,152 KB |
testcase_15 | AC | 1,139 ms
126,024 KB |
testcase_16 | AC | 1,128 ms
126,076 KB |
ソースコード
#include <bits/stdc++.h> #define debug(x) cerr << #x << ": " << x << endl #define debugArray(x, n) \ for (long long hoge = 0; (hoge) < (n); ++(hoge)) \ cerr << #x << "[" << hoge << "]: " << x[hoge] << endl using namespace std; double tick() { static clock_t oldtick; clock_t newtick = clock(); double diff = 1.0 * (newtick - oldtick) / CLOCKS_PER_SEC; oldtick = newtick; return diff; } using u32 = unsigned; using u64 = unsigned long long; namespace ntt { template <u64 mod, u64 prim_root> class Mod64 { private: using u128 = __uint128_t; static constexpr u64 mul_inv(u64 n, int e = 6, u64 x = 1) { return e == 0 ? x : mul_inv(n, e - 1, x * (2 - x * n)); } public: static constexpr u64 inv = mul_inv(mod, 6, 1); static constexpr u64 r2 = -u128(mod) % mod; static constexpr int level = __builtin_ctzll(mod - 1); static_assert(inv * mod == 1, "invalid 1/M modulo 2^64."); Mod64() {} Mod64(u64 n) : x(init(n)){}; static u64 modulo() { return mod; } static u64 init(u64 w) { return reduce(u128(w) * r2); } static u64 reduce(const u128 w) { return u64(w >> 64) + mod - ((u128(u64(w) * inv) * mod) >> 64); } static Mod64 omega() { return Mod64(prim_root).pow((mod - 1) >> level); } Mod64 &operator+=(Mod64 rhs) { this->x += rhs.x; return *this; } Mod64 &operator-=(Mod64 rhs) { this->x += 2 * mod - rhs.x; return *this; } Mod64 &operator*=(Mod64 rhs) { this->x = reduce(u128(this->x) * rhs.x); return *this; } Mod64 operator+(Mod64 rhs) const { return Mod64(*this) += rhs; } Mod64 operator-(Mod64 rhs) const { return Mod64(*this) -= rhs; } Mod64 operator*(Mod64 rhs) const { return Mod64(*this) *= rhs; } u64 get() const { return reduce(this->x) % mod; } void set(u64 n) const { this->x = n; } Mod64 pow(u64 exp) const { Mod64 ret = Mod64(1); for (Mod64 base = *this; exp; exp >>= 1, base *= base) if (exp & 1) ret *= base; return ret; } Mod64 inverse() const { return pow(mod - 2); } friend ostream &operator<<(ostream &os, const Mod64 &m) { return os << m.get(); } u64 x; }; template <typename mod_t> void convolute(mod_t *A, int s1, mod_t *B, int s2, bool cyclic = false) { int s = (cyclic ? max(s1, s2) : s1 + s2 - 1); int size = 1; while (size < s) size <<= 1; mod_t roots[mod_t::level] = {mod_t::omega()}; for (int i = 1; i < mod_t::level; i++) roots[i] = roots[i - 1] * roots[i - 1]; fill(A + s1, A + size, 0); ntt_dit4(A, size, 1, roots); if (A == B && s1 == s2) { for (int i = 0; i < size; i++) A[i] *= A[i]; } else { fill(B + s2, B + size, 0); ntt_dit4(B, size, 1, roots); for (int i = 0; i < size; i++) A[i] *= B[i]; } ntt_dit4(A, size, -1, roots); mod_t inv = mod_t(size).inverse(); for (int i = 0; i < (cyclic ? size : s); i++) A[i] *= inv; } template <typename mod_t> void rev_permute(mod_t *A, int n) { int r = 0, nh = n >> 1; for (int i = 1; i < n; i++) { for (int h = nh; !((r ^= h) & h); h >>= 1) ; if (r > i) swap(A[i], A[r]); } } template <typename mod_t> void ntt_dit4(mod_t *A, int n, int sign, mod_t *roots) { rev_permute(A, n); int logn = __builtin_ctz(n); if (logn & 1) for (int i = 0; i < n; i += 2) { mod_t a = A[i], b = A[i + 1]; A[i] = a + b; A[i + 1] = a - b; } mod_t imag = roots[mod_t::level - 2]; if (sign < 0) imag = imag.inverse(); mod_t one = mod_t(1); for (int e = 2 + (logn & 1); e < logn + 1; e += 2) { const int m = 1 << e; const int m4 = m >> 2; mod_t dw = roots[mod_t::level - e]; if (sign < 0) dw = dw.inverse(); const int block_size = max(m, (1 << 15) / int(sizeof(A[0]))); for (int k = 0; k < n; k += block_size) { mod_t w = one, w2 = one, w3 = one; for (int j = 0; j < m4; j++) { for (int i = k + j; i < k + block_size; i += m) { mod_t a0 = A[i + m4 * 0] * one, a2 = A[i + m4 * 1] * w2; mod_t a1 = A[i + m4 * 2] * w, a3 = A[i + m4 * 3] * w3; mod_t t02 = a0 + a2, t13 = a1 + a3; A[i + m4 * 0] = t02 + t13; A[i + m4 * 2] = t02 - t13; t02 = a0 - a2, t13 = (a1 - a3) * imag; A[i + m4 * 1] = t02 + t13; A[i + m4 * 3] = t02 - t13; } w *= dw; w2 = w * w; w3 = w2 * w; } } } } const int size = 1 << 22; using m64_1 = ntt::Mod64<34703335751681, 3>; using m64_2 = ntt::Mod64<35012573396993, 3>; m64_1 f1[size], g1[size]; m64_2 f2[size], g2[size]; } // namespace ntt using R = u64; class FormalPowerSeries { using FPS = FormalPowerSeries; public: FormalPowerSeries() {} FormalPowerSeries(int n) : coefs(n) {} FormalPowerSeries(int n, int c) : coefs(n, c % mod) {} FormalPowerSeries(const vector<R> &v) : coefs(v) {} FormalPowerSeries(const FPS &f, int beg, int end = -1) { if (end < 0) end = beg, beg = 0; resize(end - beg); for (int i = beg; i < end; i++) if (i < f.size()) coefs[i - beg] = f[i]; } int size() const { return coefs.size(); } void resize(int s, R v = 0) { coefs.resize(s, v); } void push_back(R c) { coefs.push_back(c); } void shrink() { while (!coefs.empty() && !coefs.back()) coefs.pop_back(); } void pop_back() { coefs.pop_back(); } const R *data() const { return coefs.data(); } R *data() { return coefs.data(); } const R &operator[](int i) const { return coefs[i]; } R &operator[](int i) { return coefs[i]; } public: static void mod_add(R &a, R b) { if ((a += b) >= mod) a -= mod; } static void mod_sub(R &a, R b) { if (int(a -= b) < 0) a += mod; } static R mod_mul(R a, R b) { return a * b % fast_mod; } static R mod_pow(R v, u64 exp) { R ret = 1; for (R base = v; exp; exp >>= 1, base = mod_mul(base, base)) if (exp & 1) ret = mod_mul(ret, base); return ret; } static R mod_inverse(R v) { return mod_pow(v, mod - 2); } static R mod_sqrt(R x) { if (x == 0 || mod == 2) return x; if (mod_pow(x, (mod - 1) >> 1) != 1) return 0; // no solution R b = 2; R w = (b * b + mod - x) % fast_mod; while (mod_pow(w, (mod - 1) >> 1) == 1) { b++; w = (b * b + mod - x) % fast_mod; } auto mul = [&](pair<R, R> u, pair<R, R> v) { R a = (u.first * v.first + u.second * v.second % fast_mod * w) % fast_mod; R b = (u.first * v.second + u.second * v.first) % fast_mod; return make_pair(a, b); }; u32 exp = (mod + 1) >> 1; pair<R, R> ret = make_pair(1, 0); for (auto base = make_pair(b, 1); exp; exp >>= 1, base = mul(base, base)) { if (exp & 1) ret = mul(ret, base); } return ret.first; } public: struct fast_div { using u128 = __uint128_t; fast_div(){}; fast_div(u64 n) : m(n) { s = (n == 1) ? 0 : 127 - __builtin_clzll(n - 1); x = ((u128(1) << s) + n - 1) / n; } friend u64 operator/(u64 n, fast_div d) { return u128(n) * d.x >> d.s; } friend u64 operator%(u64 n, fast_div d) { return n - n / d * d.m; } u64 m, s, x; }; static FPS mul_crt(int beg, int end) { using namespace ntt; auto inv = m64_2(m64_1::modulo()).inverse(); auto mod1 = m64_1::modulo() % fast_mod; FPS ret(end - beg); for (int i = 0; i < (int)ret.size(); i++) { u64 r1 = f1[i + beg].get(), r2 = f2[i + beg].get(); ret[i] = (r1 + (m64_2(r2 + m64_2::modulo() - r1) * inv).get() % fast_mod * mod1) % fast_mod; } return ret; } static void mul2(const FPS &f, const FPS &g, bool cyclic = false) { using namespace ntt; if (&f == &g) { for (int i = 0; i < (int)f.size(); i++) f1[i] = f[i]; convolute(f1, f.size(), f1, f.size(), cyclic); for (int i = 0; i < (int)f.size(); i++) f2[i] = f[i]; convolute(f2, f.size(), f2, f.size(), cyclic); } else { for (int i = 0; i < (int)f.size(); i++) f1[i] = f[i]; for (int i = 0; i < (int)g.size(); i++) g1[i] = g[i]; convolute(f1, f.size(), g1, g.size(), cyclic); for (int i = 0; i < (int)f.size(); i++) f2[i] = f[i]; for (int i = 0; i < (int)g.size(); i++) g2[i] = g[i]; convolute(f2, f.size(), g2, g.size(), cyclic); } } private: FPS mul_n(const FPS &g) const { if (size() == 0 || g.size() == 0) return FPS(); FPS ret(size() + g.size() - 1, 0); for (int i = 0; i < size(); i++) for (int j = 0; j < g.size(); j++) mod_add(ret[i + j], mod_mul((*this)[i], g[j])); return ret; } FPS mul(const FPS &g) const { if (size() + g.size() < 80) return mul_n(g); const auto &f = *this; mul2(f, g, false); return mul_crt(0, f.size() + g.size() - 1); } pair<FPS, FPS> div_n(const FPS &g) const { FPS f(*this, size()); if (f.size() < g.size()) return make_pair(FPS(), f); FPS u(f.size() - g.size() + 1, 0); R inv = mod_inverse(g[g.size() - 1]); for (int i = u.size() - 1; i >= 0; --i) { u[i] = mod_mul(f[f.size() - 1], inv); for (int j = 0; j < g.size(); ++j) mod_sub(f[j + f.size() - g.size()], mod_mul(g[j], u[i])); f.pop_back(); } return {u, f}; } FPS middle_product(const FPS &g) const { const FPS &f = *this; if (f.size() == 0 || g.size() == 0) return FPS(); mul2(f, g, true); return mul_crt(f.size(), g.size()); } FPS inverse(int deg = -1) const { if (deg < 0) deg = size(); FPS ret(1, mod_inverse((*this)[0])); for (int e = 1, ne; e < deg; e = ne) { ne = min(2 * e, deg); FPS h = FPS(ret, ne - e) * -ret.middle_product(FPS(*this, ne)); for (int i = e; i < ne; i++) ret.push_back(h[i - e]); } return ret; } FPS differentiation() const { FPS ret(max(0, size() - 1)); for (int i = 1; i < size(); i++) ret[i - 1] = mod_mul(i, (*this)[i]); return ret; } FPS integral() const { FPS ret(size() + 1); ret[0] = 0; for (int i = 0; i < size(); i++) ret[i + 1] = mod_mul(inve[i + 1], (*this)[i]); return ret; } FPS logarithm(int deg = -1) const { assert((*this)[0] == 1); if (deg < 0) deg = size(); return FPS(differentiation() * inverse(deg), deg - 1).integral(); } FPS exponent(int deg = -1) const { assert((*this)[0] == 0); if (deg < 0) deg = size(); FPS ret(vector<R>({1, 1 < size() ? (*this)[1] : 0})), retinv(1, 1); FPS f = differentiation(); FPS retdif = ret.differentiation(); for (int e = 1, ne = 2, nne; ne < deg; e = ne, ne = nne) { nne = min(2 * ne, deg); FPS h = FPS(retinv, ne - e) * -retinv.middle_product(ret); for (int i = e; i < ne; i++) retinv.push_back(h[i - e]); FPS a = ret * FPS(f, nne) - retdif; FPS c = (retinv * FPS(a, nne)).integral(); h = ret.middle_product(FPS(c, nne)); for (int i = ne; i < nne; i++) { ret.push_back(h[i - ne]); retdif.push_back(mod_mul(i, h[i - ne])); } } return ret; } FPS square_root(int deg = -1) const { if (deg < 0) deg = size(); if ((*this)[0] == 0) { for (int i = 1; i < size(); i++) { if ((*this)[i] != 0) { if (i & 1) return FPS(); // no solution if (deg - i / 2 <= 0) break; auto ret = (*this >> i).square_root(deg - i / 2); if (!ret.size()) return FPS(); // no solution ret = ret << (i / 2); if (ret.size() < deg) ret.resize(deg, 0); return ret; } } return FPS(deg, 0); } R sqr = mod_sqrt((*this)[0]); if (sqr * 2 > mod) sqr = mod - sqr; if (mod_mul(sqr, sqr) != (*this)[0]) return FPS(); // no solution FPS ret(1, sqr); for (int i = 1; i < deg; i <<= 1) { ret = FPS(ret + (FPS(*this, i << 1) * ret.inverse(i << 1)), i << 1); ret *= inve[2]; } return ret; } FPS power(u64 k, int deg = -1) const { if (deg < 0) deg = size(); for (int i = 0; i < size(); i++) { if ((*this)[i] != 0) { if (i * k > deg) return FPS(deg, 0); R rev = mod_inverse((*this)[i]); FPS ret = (((*this * rev) >> i).logarithm() * k).exponent() * mod_pow((*this)[i], k); return FPS(ret << (i * k), deg); } } return *this; } public: FPS rev() const { FPS ret((*this), size()); reverse(ret.coefs.begin(), ret.coefs.end()); return ret; } FPS operator-() { FPS ret = *this; for (int i = 0; i < (int)ret.size(); i++) ret[i] = (ret[i] == 0 ? 0 : mod - ret[i]); return ret; } FPS &operator+=(const FPS &rhs) { if (size() < rhs.size()) resize(rhs.size()); for (int i = 0; i < (int)rhs.size(); i++) mod_add((*this)[i], rhs[i]); return *this; } FPS &operator-=(const FPS &rhs) { if (size() < rhs.size()) resize(rhs.size()); for (int i = 0; i < (int)rhs.size(); i++) mod_sub((*this)[i], rhs[i]); return *this; } FPS &operator*=(const FPS &rhs) { return *this = *this * rhs; } FPS &operator/=(const FPS &rhs) { if (size() < rhs.size()) return *this = FPS(); if (rhs.size() < 250) return *this = div_n(rhs).first; int sq = size() - rhs.size() + 1; return *this = FPS(FPS(rev(), sq) * FPS(rhs.rev().inverse(sq), sq), sq).rev(); } FPS &operator%=(const FPS &rhs) { if (rhs.size() < 250) return *this = div_n(rhs).second; *this -= (*this / rhs) * rhs; shrink(); return *this; } FPS &operator+=(const R &v) { mod_add((*this)[0], v); return *this; } FPS &operator-=(const R &v) { mod_sub((*this)[0], v); return *this; } FPS &operator*=(const R &v) { for (int k = 0; k < size(); k++) (*this)[k] = mod_mul((*this)[k], v); return *this; } FPS operator>>(int sz) const { if (size() <= sz) return {}; return FPS(*this, sz, size()); } FPS operator<<(int sz) const { FPS ret(size() + sz, 0); for (int i = 0; i < size(); i++) ret[sz + i] = (*this)[i]; return ret; } FPS operator+(const FPS &rhs) const { return FPS(*this) += rhs; } // O(N) FPS operator-(const FPS &rhs) const { return FPS(*this) -= rhs; } // O(N) FPS operator*(const FPS &rhs) const { return this->mul(rhs); } // O(NlogN) FPS operator/(const FPS &rhs) const { return FPS(*this) /= rhs; } // O(NlogN) FPS operator%(const FPS &rhs) const { return FPS(*this) %= rhs; } // O(NlogN) FPS operator+(const R &v) const { return FPS(*this) += v; } // O(1) FPS operator-(const R &v) const { return FPS(*this) -= v; } // O(1) FPS operator*(const R &v) const { return FPS(*this) *= v; } // O(N) FPS diff() const { return differentiation(); } // O(N) FPS inte() const { return integral(); } // O(N) FPS inv(int deg = -1) const { return inverse(deg); } // O(NlogN) FPS log(int deg = -1) const { return logarithm(deg); } // O(NlogN) FPS exp(int deg = -1) const { return exponent(deg); } // O(NlogN) FPS sqrt(int deg = -1) const { return square_root(deg); } // O(NlogN) FPS pow(u64 k, int deg = -1) const { return power(k, deg); } // O(NlogN) public: vector<R> coefs; static R mod; static fast_div fast_mod; static constexpr R SIZE = 1 << 20; static R inve[SIZE]; static void init(R m) { mod = m; fast_mod = fast_div(m); inve[1] = 1; for (int i = 2; i < SIZE; ++i) inve[i] = inve[mod % i] * (mod - mod / i) % fast_mod; } }; using FPS = FormalPowerSeries; R FPS::mod; FPS::fast_div FPS::fast_mod; R FPS::inve[]; signed main() { cin.tie(0); ios::sync_with_stdio(0); // tick(); FPS::init(1e9 + 7); R p; cin >> p; int q_max = 2000000; FPS a(q_max); a[0] = 0; a[1] = 1; for (int i = 2; i < q_max; i++) { a[i] = FPS::mod_mul(p, a[i - 1]); FPS::mod_add(a[i], a[i - 2]); } FPS b = a * a; int Q; cin >> Q; while (Q--) { int q; cin >> q; cout << b[q - 2] << endl; } // cerr << tick() << endl; return 0; }