結果
| 問題 |
No.1023 Cyclic Tour
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2020-04-10 21:49:03 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 121 ms / 2,000 ms |
| コード長 | 7,904 bytes |
| コンパイル時間 | 2,461 ms |
| コンパイル使用メモリ | 180,792 KB |
| 実行使用メモリ | 20,212 KB |
| 最終ジャッジ日時 | 2024-09-15 20:08:52 |
| 合計ジャッジ時間 | 8,332 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 49 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/
// UnionFind Tree (0-indexed), based on size of each disjoint set
struct UnionFind
{
std::vector<int> par, cou;
UnionFind(int N = 0) : par(N), cou(N, 1) {
iota(par.begin(), par.end(), 0);
}
int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); }
bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y) return false;
if (cou[x] < cou[y]) std::swap(x, y);
par[y] = x, cou[x] += cou[y];
return true;
}
int count(int x) { return cou[find(x)]; }
bool same(int x, int y) { return find(x) == find(y); }
};
// Directed graph library to find strongly connected components (強連結成分分解)
// 0-indexed directed graph
// Complexity: O(V + E)
struct DirectedGraphSCC {
int V; // # of Vertices
std::vector<std::vector<int>> to, from;
std::vector<int> used; // Only true/false
std::vector<int> vs;
std::vector<int> cmp;
int scc_num = -1;
DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {}
void _dfs(int v) {
used[v] = true;
for (auto t : to[v]) if (!used[t]) _dfs(t);
vs.push_back(v);
}
void _rdfs(int v, int k) {
used[v] = true;
cmp[v] = k;
for (auto t : from[v]) if (!used[t]) _rdfs(t, k);
}
void add_edge(int from_, int to_) {
assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V);
to[from_].push_back(to_);
from[to_].push_back(from_);
}
// Detect strongly connected components and return # of them.
// Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed)
int FindStronglyConnectedComponents() {
used.assign(V, false);
vs.clear();
for (int v = 0; v < V; v++) if (!used[v]) _dfs(v);
used.assign(V, false);
scc_num = 0;
for (int i = (int)vs.size() - 1; i >= 0; i--) if (!used[vs[i]]) _rdfs(vs[i], scc_num++);
return scc_num;
}
// After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all vertices
// belonging to the same component(The resultant graph is DAG).
DirectedGraphSCC GenerateTopologicalGraph() {
DirectedGraphSCC newgraph(scc_num);
for (int s = 0; s < V; s++) for (auto t : to[s]) {
if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]);
}
return newgraph;
}
};
// 2-SAT solver: Find a solution for `(Ai v Aj) ^ (Ak v Al) ^ ... = true`
// - `nb_sat_vars`: Number of variables
// - Considering a graph with `2 * nb_sat_vars` vertices
// - Vertices [0, nb_sat_vars) means `Ai`
// - vertices [nb_sat_vars, 2 * nb_sat_vars) means `not Ai`
struct SATSolver : DirectedGraphSCC {
int nb_sat_vars;
std::vector<int> solution;
SATSolver(int nb_variables = 0) : DirectedGraphSCC(nb_variables * 2), nb_sat_vars(nb_variables), solution(nb_sat_vars) {}
void add_x_or_y_constraint(bool is_x_true, int x, bool is_y_true, int y) {
assert(x >= 0 and x < nb_sat_vars);
assert(y >= 0 and y < nb_sat_vars);
if (!is_x_true) x += nb_sat_vars;
if (!is_y_true) y += nb_sat_vars;
add_edge((x + nb_sat_vars) % (nb_sat_vars * 2), y);
add_edge((y + nb_sat_vars) % (nb_sat_vars * 2), x);
}
// Solve the 2-SAT problem. If no solution exists, return `false`.
// Otherwise, dump one solution to `solution` and return `true`.
bool run() {
FindStronglyConnectedComponents();
for (int i = 0; i < nb_sat_vars; i++) {
if (cmp[i] == cmp[i + nb_sat_vars]) return false;
solution[i] = cmp[i] > cmp[i + nb_sat_vars];
}
return true;
}
};
int main()
{
int N, M;
cin >> N >> M;
vector<pint> v;
UnionFind uf(N);
while (M--)
{
int a, b, c;
cin >> a >> b >> c;
a--, b--;
if (c == 2)
{
v.emplace_back(a, b);
}
else
{
if (!uf.unite(a, b))
{
puts("Yes");
return 0;
}
}
}
DirectedGraphSCC graph(N);
for (auto p : v)
{
int s = uf.find(p.first), t = uf.find(p.second);
if (s == t)
{
puts("Yes");
return 0;
}
graph.add_edge(uf.find(p.first), uf.find(p.second));
}
graph.FindStronglyConnectedComponents();
vector<int> deg(N);
for (auto x : graph.cmp) deg[x]++;
if (*max_element(deg.begin(), deg.end()) > 1) puts("Yes");
else puts("No");
}
hitonanode