結果
問題 | No.1023 Cyclic Tour |
ユーザー | hitonanode |
提出日時 | 2020-04-10 21:49:03 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 121 ms / 2,000 ms |
コード長 | 7,904 bytes |
コンパイル時間 | 2,461 ms |
コンパイル使用メモリ | 180,792 KB |
実行使用メモリ | 20,212 KB |
最終ジャッジ日時 | 2024-09-15 20:08:52 |
合計ジャッジ時間 | 8,332 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 27 ms
5,376 KB |
testcase_05 | AC | 27 ms
5,376 KB |
testcase_06 | AC | 28 ms
5,376 KB |
testcase_07 | AC | 27 ms
5,376 KB |
testcase_08 | AC | 45 ms
12,356 KB |
testcase_09 | AC | 56 ms
13,104 KB |
testcase_10 | AC | 56 ms
13,364 KB |
testcase_11 | AC | 57 ms
13,776 KB |
testcase_12 | AC | 58 ms
15,200 KB |
testcase_13 | AC | 62 ms
14,516 KB |
testcase_14 | AC | 52 ms
14,256 KB |
testcase_15 | AC | 60 ms
14,524 KB |
testcase_16 | AC | 103 ms
17,652 KB |
testcase_17 | AC | 121 ms
17,780 KB |
testcase_18 | AC | 103 ms
17,196 KB |
testcase_19 | AC | 99 ms
16,944 KB |
testcase_20 | AC | 61 ms
12,240 KB |
testcase_21 | AC | 61 ms
12,392 KB |
testcase_22 | AC | 79 ms
13,540 KB |
testcase_23 | AC | 82 ms
13,912 KB |
testcase_24 | AC | 100 ms
15,728 KB |
testcase_25 | AC | 63 ms
12,252 KB |
testcase_26 | AC | 62 ms
12,232 KB |
testcase_27 | AC | 59 ms
11,432 KB |
testcase_28 | AC | 94 ms
15,316 KB |
testcase_29 | AC | 95 ms
15,956 KB |
testcase_30 | AC | 98 ms
15,352 KB |
testcase_31 | AC | 87 ms
14,832 KB |
testcase_32 | AC | 103 ms
16,188 KB |
testcase_33 | AC | 91 ms
15,444 KB |
testcase_34 | AC | 21 ms
5,376 KB |
testcase_35 | AC | 46 ms
5,376 KB |
testcase_36 | AC | 71 ms
12,764 KB |
testcase_37 | AC | 82 ms
14,808 KB |
testcase_38 | AC | 90 ms
15,672 KB |
testcase_39 | AC | 86 ms
13,900 KB |
testcase_40 | AC | 85 ms
13,972 KB |
testcase_41 | AC | 84 ms
14,028 KB |
testcase_42 | AC | 57 ms
10,588 KB |
testcase_43 | AC | 64 ms
12,872 KB |
testcase_44 | AC | 34 ms
10,196 KB |
testcase_45 | AC | 61 ms
20,088 KB |
testcase_46 | AC | 65 ms
20,212 KB |
testcase_47 | AC | 33 ms
10,324 KB |
testcase_48 | AC | 60 ms
12,664 KB |
testcase_49 | AC | 64 ms
12,660 KB |
testcase_50 | AC | 61 ms
12,432 KB |
testcase_51 | AC | 58 ms
9,968 KB |
testcase_52 | AC | 58 ms
10,488 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long int; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); } template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); } template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); } template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; /* #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/tag_and_trait.hpp> using namespace __gnu_pbds; // find_by_order(), order_of_key() template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>; template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>; */ // UnionFind Tree (0-indexed), based on size of each disjoint set struct UnionFind { std::vector<int> par, cou; UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); } int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return false; if (cou[x] < cou[y]) std::swap(x, y); par[y] = x, cou[x] += cou[y]; return true; } int count(int x) { return cou[find(x)]; } bool same(int x, int y) { return find(x) == find(y); } }; // Directed graph library to find strongly connected components (強連結成分分解) // 0-indexed directed graph // Complexity: O(V + E) struct DirectedGraphSCC { int V; // # of Vertices std::vector<std::vector<int>> to, from; std::vector<int> used; // Only true/false std::vector<int> vs; std::vector<int> cmp; int scc_num = -1; DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {} void _dfs(int v) { used[v] = true; for (auto t : to[v]) if (!used[t]) _dfs(t); vs.push_back(v); } void _rdfs(int v, int k) { used[v] = true; cmp[v] = k; for (auto t : from[v]) if (!used[t]) _rdfs(t, k); } void add_edge(int from_, int to_) { assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V); to[from_].push_back(to_); from[to_].push_back(from_); } // Detect strongly connected components and return # of them. // Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed) int FindStronglyConnectedComponents() { used.assign(V, false); vs.clear(); for (int v = 0; v < V; v++) if (!used[v]) _dfs(v); used.assign(V, false); scc_num = 0; for (int i = (int)vs.size() - 1; i >= 0; i--) if (!used[vs[i]]) _rdfs(vs[i], scc_num++); return scc_num; } // After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all vertices // belonging to the same component(The resultant graph is DAG). DirectedGraphSCC GenerateTopologicalGraph() { DirectedGraphSCC newgraph(scc_num); for (int s = 0; s < V; s++) for (auto t : to[s]) { if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]); } return newgraph; } }; // 2-SAT solver: Find a solution for `(Ai v Aj) ^ (Ak v Al) ^ ... = true` // - `nb_sat_vars`: Number of variables // - Considering a graph with `2 * nb_sat_vars` vertices // - Vertices [0, nb_sat_vars) means `Ai` // - vertices [nb_sat_vars, 2 * nb_sat_vars) means `not Ai` struct SATSolver : DirectedGraphSCC { int nb_sat_vars; std::vector<int> solution; SATSolver(int nb_variables = 0) : DirectedGraphSCC(nb_variables * 2), nb_sat_vars(nb_variables), solution(nb_sat_vars) {} void add_x_or_y_constraint(bool is_x_true, int x, bool is_y_true, int y) { assert(x >= 0 and x < nb_sat_vars); assert(y >= 0 and y < nb_sat_vars); if (!is_x_true) x += nb_sat_vars; if (!is_y_true) y += nb_sat_vars; add_edge((x + nb_sat_vars) % (nb_sat_vars * 2), y); add_edge((y + nb_sat_vars) % (nb_sat_vars * 2), x); } // Solve the 2-SAT problem. If no solution exists, return `false`. // Otherwise, dump one solution to `solution` and return `true`. bool run() { FindStronglyConnectedComponents(); for (int i = 0; i < nb_sat_vars; i++) { if (cmp[i] == cmp[i + nb_sat_vars]) return false; solution[i] = cmp[i] > cmp[i + nb_sat_vars]; } return true; } }; int main() { int N, M; cin >> N >> M; vector<pint> v; UnionFind uf(N); while (M--) { int a, b, c; cin >> a >> b >> c; a--, b--; if (c == 2) { v.emplace_back(a, b); } else { if (!uf.unite(a, b)) { puts("Yes"); return 0; } } } DirectedGraphSCC graph(N); for (auto p : v) { int s = uf.find(p.first), t = uf.find(p.second); if (s == t) { puts("Yes"); return 0; } graph.add_edge(uf.find(p.first), uf.find(p.second)); } graph.FindStronglyConnectedComponents(); vector<int> deg(N); for (auto x : graph.cmp) deg[x]++; if (*max_element(deg.begin(), deg.end()) > 1) puts("Yes"); else puts("No"); }