結果
問題 | No.1020 Reverse |
ユーザー | kotamanegi |
提出日時 | 2020-04-10 22:41:22 |
言語 | C++17(clang) (17.0.6 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 24,281 bytes |
コンパイル時間 | 2,304 ms |
コンパイル使用メモリ | 173,824 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-30 17:27:48 |
合計ジャッジ時間 | 3,095 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 3 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 3 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 3 ms
5,248 KB |
コンパイルメッセージ
main.cpp:4:18: warning: '#pragma comment linker' ignored [-Wignored-pragmas] 4 | #pragma comment (linker, "/STACK:526000000") | ^ 1 warning generated.
ソースコード
#define _CRT_SECURE_NO_WARNINGS#define _USE_MATH_DEFINES#pragma comment (linker, "/STACK:526000000")#include "bits/stdc++.h"using namespace std;typedef string::const_iterator State;#define eps 1e-12L#define MAX_MOD 1000000007LL#define GYAKU 500000004LL#define MOD 998244353LL#define pb push_back#define mp make_pairtypedef long long ll;#define REP(a,b) for(long long (a) = 0;(a) < (b);++(a))#define ALL(x) (x).begin(),(x).end()// geometry librarytypedef complex<long double> Point;typedef pair<complex<long double>, complex<long double>> Line;typedef struct Circle {complex<long double> center;long double r;}Circle;long double dot(Point a, Point b) {return (a.real() * b.real() + a.imag() * b.imag());}long double cross(Point a, Point b) {return (a.real() * b.imag() - a.imag() * b.real());}long double Dist_Line_Point(Line a, Point b) {if (dot(a.second - a.first, b - a.first) < eps) return abs(b - a.first);if (dot(a.first - a.second, b - a.second) < eps) return abs(b - a.second);return abs(cross(a.second - a.first, b - a.first)) / abs(a.second - a.first);}int is_intersected_ls(Line a, Line b) {return (cross(a.second - a.first, b.first - a.first) * cross(a.second - a.first, b.second - a.first) < eps) &&(cross(b.second - b.first, a.first - b.first) * cross(b.second - b.first, a.second - b.first) < eps);}Point intersection_l(Line a, Line b) {Point da = a.second - a.first;Point db = b.second - b.first;return a.first + da * cross(db, b.first - a.first) / cross(db, da);}long double Dist_Line_Line(Line a, Line b) {if (is_intersected_ls(a, b) == 1) {return 0;}return min({ Dist_Line_Point(a,b.first), Dist_Line_Point(a,b.second),Dist_Line_Point(b,a.first),Dist_Line_Point(b,a.second) });}pair<Point, Point> intersection_Circle_Circle(Circle a, Circle b) {long double dist = abs(a.center - b.center);assert(dist <= eps + a.r + b.r);assert(dist + eps >= abs(a.r - b.r));Point target = b.center - a.center;long double pointer = target.real() * target.real() + target.imag() * target.imag();long double aa = pointer + a.r * a.r - b.r * b.r;aa /= 2.0L;Point l{ (aa * target.real() + target.imag() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer,(aa * target.imag() - target.real() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer };Point r{ (aa * target.real() - target.imag() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer,(aa * target.imag() + target.real() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer };r = r + a.center;l = l + a.center;return mp(l, r);}//end of geometryll gcd(int a, int b) {if (b == 0) return a;return gcd(b, a % b);}template<typename A>A pows(A val, ll b) {assert(b >= 1);A ans = val;b--;while (b) {if (b % 2) {ans *= val;}val *= val;b /= 2LL;}return ans;}template<typename A>class Compressor {public:bool is_zipped = false;map<A, ll> zipper;map<ll, A> unzipper;queue<A> fetcher;Compressor() {is_zipped = false;zipper.clear();unzipper.clear();}void add(A now) {assert(is_zipped == false);zipper[now] = 1;fetcher.push(now);}void exec() {assert(is_zipped == false);int cnt = 0;for (auto i = zipper.begin(); i != zipper.end(); ++i) {i->second = cnt;unzipper[cnt] = i->first;cnt++;}is_zipped = true;}ll fetch() {assert(is_zipped == true);A hoge = fetcher.front();fetcher.pop();return zipper[hoge];}ll zip(A now) {assert(is_zipped == true);assert(zipper.find(now) != zipper.end());return zipper[now];}A unzip(ll a) {assert(is_zipped == true);assert(a < unzipper.size());return unzipper[a];}ll next(A now) {auto x = zipper.upper_bound(now);if (x == zipper.end()) return zipper.size();return (ll)((*x).second);}ll back(A now) {auto x = zipper.lower_bound(now);if (x == zipper.begin()) return -1;x--;return (ll)((*x).second);}};template<typename A>class Matrix {public:vector<vector<A>> data;Matrix(vector<vector<A>> a) :data(a) {}Matrix operator + (const Matrix obj) {vector<vector<A>> ans;assert(obj.data.size() == this->data.size());assert(obj.data[0].size() == this->data[0].size());REP(i, obj.data.size()) {ans.push_back(vector<A>());REP(q, obj.data[i].size()) {A hoge = obj.data[i][q] + (this->data[i][q]);ans.back().push_back(hoge);}}return Matrix(ans);}Matrix operator - (const Matrix obj) {vector<vector<A>> ans;assert(obj.data.size() == this->data.size());assert(obj.data[0].size() == this->data[0].size());REP(i, obj.data.size()) {ans.push_back(vector<A>());REP(q, obj.data[i].size()) {A hoge = this->data[i][q] - obj.data[i][q];ans.back().push_back(hoge);}}return Matrix(ans);}Matrix operator * (const Matrix obj) {vector<vector<A>> ans;assert(obj.data.size() == this->data[0].size());REP(i, this -> data.size()) {ans.push_back(vector<A>());REP(q, obj.data[0].size()) {A hoge = (this->data[i][0]) * (obj.data[0][q]);for (int t = 1; t < obj.data[i].size(); ++t) {hoge += this->data[i][t] * obj.data[t][q];}ans.back().push_back(hoge);}}return Matrix(ans);}Matrix& operator *= (const Matrix obj) {*this = (*this * obj);return *this;}Matrix& operator += (const Matrix obj) {*this = (*this + obj);return *this;}Matrix& operator -= (const Matrix obj) {*this = (*this - obj);return *this;}};struct Fraction {ll a;ll b;Fraction() :a(0LL), b(1LL) {}Fraction(ll c, ll d) {int hoge = gcd(llabs(c), llabs(d));c /= hoge;d /= hoge;if (d < 0) {d *= -1;c *= -1;}a = c;b = d;}bool operator <(Fraction rhs) const {return a * rhs.b < rhs.a * b;}};template <std::uint_fast64_t mod>class modint {public:using u64 = std::uint_fast64_t;u64 value = 0;modint() :value(0LL){}modint(ll a) : value(((a% mod) + 2 * mod) % mod) {}constexpr modint operator+(const modint rhs) const {return modint(*this) += rhs;}constexpr modint operator-(const modint rhs) const {return modint(*this) -= rhs;}constexpr modint operator*(const modint rhs) const {return modint(*this) *= rhs;}constexpr modint operator/(const modint rhs) const {return modint(*this) /= rhs;}constexpr modint& operator+=(const modint rhs) {value += rhs.value;if (value >= mod) {value -= mod;}return *this;}constexpr modint& operator-=(const modint rhs) {if (value < rhs.value) {value += mod;}value -= rhs.value;return *this;}constexpr modint& operator*=(const modint rhs) {value = (value * rhs.value) % mod;return *this;}constexpr modint& operator/=(modint rhs) {ll rem = mod - 2;while (rem) {if (rem % 2) {*this *= rhs;}rhs *= rhs;rem /= 2LL;}return *this;}bool operator <(modint rhs) const {return value < rhs.value;}friend ostream& operator<<(ostream& os, modint& p) {os << p.value;return (os);}};class Dice {public:vector<ll> vertexs;//Up: 0,Left: 1,Center: 2,Right: 3,Adj: 4, Down: 5Dice(vector<ll> init) :vertexs(init) {}//Look from Centervoid RtoL() {for (int q = 1; q < 4; ++q) {swap(vertexs[q], vertexs[q + 1]);}}void LtoR() {for (int q = 3; q >= 1; --q) {swap(vertexs[q], vertexs[q + 1]);}}void UtoD() {swap(vertexs[5], vertexs[4]);swap(vertexs[2], vertexs[5]);swap(vertexs[0], vertexs[2]);}void DtoU() {swap(vertexs[0], vertexs[2]);swap(vertexs[2], vertexs[5]);swap(vertexs[5], vertexs[4]);}bool ReachAble(Dice now) {set<Dice> hoge;queue<Dice> next;next.push(now);hoge.insert(now);while (next.empty() == false) {Dice seeing = next.front();next.pop();if (seeing == *this) return true;seeing.RtoL();if (hoge.count(seeing) == 0) {hoge.insert(seeing);next.push(seeing);}seeing.LtoR();seeing.LtoR();if (hoge.count(seeing) == 0) {hoge.insert(seeing);next.push(seeing);}seeing.RtoL();seeing.UtoD();if (hoge.count(seeing) == 0) {hoge.insert(seeing);next.push(seeing);}seeing.DtoU();seeing.DtoU();if (hoge.count(seeing) == 0) {hoge.insert(seeing);next.push(seeing);}}return false;}bool operator ==(const Dice& a) {for (int q = 0; q < 6; ++q) {if (a.vertexs[q] != (*this).vertexs[q]) {return false;}}return true;}bool operator <(const Dice& a) const {return (*this).vertexs < a.vertexs;}};pair<Dice, Dice> TwoDimDice(int center, int up) {int target = 1;while (true) {if (center != target && 7 - center != target && up != target && 7 - up != target) {break;}target++;}return mp(Dice(vector<ll>{up, target, center, 7 - target, 7 - center, 7 - up}), Dice(vector<ll>{up, 7 - target, center, target, 7 - center, 7 -up}));}tuple<Dice, Dice, Dice, Dice> OneDimDice(int center) {int bo = min(center, 7 - center);pair<int, int> goa;if (bo == 1) {goa = mp(2, 3);}else if (bo == 2) {goa = mp(1, 3);}else if (bo == 3) {goa = mp(1, 2);}tuple<Dice, Dice, Dice, Dice> now = make_tuple(Dice(vector<ll>{goa.first, goa.second, center, 7 - goa.second, 7 - center, 7 - goa.first}),Dice(vector<ll>{goa.first, 7 - goa.second, center, goa.second, 7 - center, 7 - goa.first}),Dice(vector<ll>{7 - goa.first, goa.second, center, 7 - goa.second, 7 - center, goa.first}),Dice(vector<ll>{7 - goa.first, 7 - goa.second, center, goa.second, 7 - center, goa.first}));return now;}template<typename A, typename B>class Dijkstra {public:vector<vector<pair<int, A>>> vertexs;B Cost_Function;Dijkstra(int n, B cost) : Cost_Function(cost) {vertexs = vector<vector<pair<int, A>>>(n, vector<pair<int, A>>{});}~Dijkstra() {vertexs.clear();}void add_edge(int a, int b, A c) {vertexs[a].push_back(mp(b, c));}vector<ll> build_result(int StartPoint) {vector<ll> dist(vertexs.size(), 2e18);dist[StartPoint] = 0;priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<pair<ll, int>>> next;next.push(make_pair(0, StartPoint));while (next.empty() == false) {pair<ll, int> now = next.top();next.pop();if (dist[now.second] != now.first) continue;for (auto x : vertexs[now.second]) {ll now_cost = now.first + Cost_Function(x.second);if (dist[x.first] > now_cost) {dist[x.first] = now_cost;next.push(mp(now_cost, x.first));}}}return dist;}};class Dinic {public:struct edge {int to;int cap;int rev;};vector<vector<edge>> Graph;vector<int> level;vector<int> itr;Dinic(int n) {Graph = vector<vector<edge>>(n, vector<edge>());}void add_edge(int a, int b, int cap) {Graph[a].push_back(edge{ b, cap ,(int)Graph[b].size() });Graph[b].push_back(edge{ a,0,(int)Graph[a].size() - 1 });}void bfs(int s) {level = vector<int>(Graph.size(), -1);level[s] = 0;queue<int> next;next.push(s);while (next.empty() == false) {int now = next.front();next.pop();for (auto x : Graph[now]) {if (x.cap == 0) continue;if (level[x.to] == -1) {level[x.to] = level[now] + 1;next.push(x.to);}}}}int dfs(int now, int goal, int val) {if (goal == now) return val;for (int& i = itr[now]; i < (int)Graph[now].size(); ++i) {edge& target = Graph[now][i];if (target.cap > 0 && level[now] < level[target.to]) {int d = dfs(target.to, goal, min(val, target.cap));if (d > 0) {target.cap -= d;Graph[target.to][target.rev].cap += d;return d;}}}return 0;}int run(int s, int t) {int ans = 0;int f = 0;while (bfs(s), level[t] >= 0) {itr = vector<int>(Graph.size(), 0);while ((f = dfs(s, t, 1e9)) > 0) {ans += f;}}return ans;}};class HLDecomposition {public:vector<vector<int>> vertexs;vector<int> depth;vector<int> backs;vector<int> connections;vector<int> zip, unzip;HLDecomposition(int n) {vertexs = vector<vector<int>>(n, vector<int>());depth = vector<int>(n);zip = vector<int>(n);unzip = zip;}void add_edge(int a, int b) {vertexs[a].push_back(b);vertexs[b].push_back(a);}int depth_dfs(int now, int back) {depth[now] = 0;for (auto x : vertexs[now]) {if (x == back) continue;depth[now] = max(depth[now], 1 + depth_dfs(x, now));}return depth[now];}void dfs(int now, int backing) {zip[now] = backs.size();unzip[backs.size()] = now;backs.push_back(backing);int now_max = -1;int itr = -1;for (auto x : vertexs[now]) {if (depth[x] > depth[now]) continue;if (now_max < depth[x]) {now_max = depth[x];itr = x;}}if (itr == -1) return;connections.push_back(connections.back());dfs(itr, backing);for (auto x : vertexs[now]) {if (depth[x] > depth[now]) continue;if (x == itr) continue;connections.push_back(zip[now]);dfs(x, backs.size());}return;}void build() {depth_dfs(0, -1);connections.push_back(-1);dfs(0, -1);}vector<pair<int, int>> query(int a, int b) {a = zip[a];b = zip[b];vector<pair<int, int>> ans;while (backs[a] != backs[b]) {if (a < b) swap(a, b);ans.push_back(mp(backs[a], a + 1));a = connections[a];}if (a > b) swap(a, b);ans.push_back(mp(a, b + 1));return ans;}int lca(int a, int b) {a = zip[a];b = zip[b];while (backs[a] != backs[b]) {if (a < b) swap(a, b);a = connections[a];}return unzip[min(a, b)];}};//by ei1333//https://ei1333.github.io/luzhiled/snippets/structure/segment-tree.htmltemplate< typename Monoid >struct SegmentTree {using F = function< Monoid(Monoid, Monoid) >;int sz;vector< Monoid > seg;const F f;const Monoid M1;SegmentTree(int n, const F f, const Monoid& M1) : f(f), M1(M1) {sz = 1;while (sz < n) sz <<= 1;seg.assign(2 * sz + 1, M1);}void set(int k, const Monoid& x) {seg[k + sz] = x;}void build() {for (int k = sz - 1; k > 0; k--) {seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);}}void update(int k, const Monoid& x) {k += sz;seg[k] = x;while (k >>= 1) {seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);}}Monoid query(int a, int b) {Monoid L = M1, R = M1;for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {if (a & 1) L = f(L, seg[a++]);if (b & 1) R = f(seg[--b], R);}return f(L, R);}Monoid operator[](const int& k) const {return seg[k + sz];}template< typename C >int find_subtree(int a, const C& check, Monoid& M, bool type) {while (a < sz) {Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);if (check(nxt)) a = 2 * a + type;else M = nxt, a = 2 * a + 1 - type;}return a - sz;}template< typename C >int find_first(int a, const C& check) {Monoid L = M1;if (a <= 0) {if (check(f(L, seg[1]))) return find_subtree(1, check, L, false);return -1;}int b = sz;for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {if (a & 1) {Monoid nxt = f(L, seg[a]);if (check(nxt)) return find_subtree(a, check, L, false);L = nxt;++a;}}return -1;}template< typename C >int find_last(int b, const C& check) {Monoid R = M1;if (b >= sz) {if (check(f(seg[1], R))) return find_subtree(1, check, R, true);return -1;}int a = sz;for (b += sz; a < b; a >>= 1, b >>= 1) {if (b & 1) {Monoid nxt = f(seg[--b], R);if (check(nxt)) return find_subtree(b, check, R, true);R = nxt;}}return -1;}};template< typename Monoid, typename OperatorMonoid = Monoid >struct LazySegmentTree {using F = function< Monoid(Monoid, Monoid) >;using G = function< Monoid(Monoid, OperatorMonoid, int) >;using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;int sz, height;vector< Monoid > data;vector< OperatorMonoid > lazy;const F f;const G g;const H h;const Monoid M1;const OperatorMonoid OM0;LazySegmentTree(int n, const F f, const G g, const H h,const Monoid& M1, const OperatorMonoid OM0): f(f), g(g), h(h), M1(M1), OM0(OM0) {sz = 1;height = 0;while (sz < n) sz <<= 1, height++;data.assign(2 * sz, M1);lazy.assign(2 * sz, OM0);}void set(int k, const Monoid& x) {data[k + sz] = x;}void build() {for (int k = sz - 1; k > 0; k--) {data[k] = f(data[2 * k + 0], data[2 * k + 1]);}}inline void propagate(int k) {if (lazy[k] != OM0) {lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);data[k] = reflect(k);lazy[k] = OM0;}}inline Monoid reflect(int k) {if (lazy[k] == OM0) return data[k];for (int q = sz; q >= 0; q /= 2) {if (q & k) {return g(data[k], lazy[k], sz / q);}}}inline void recalc(int k) {while (k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1));}inline void thrust(int k) {for (int i = height; i > 0; i--) propagate(k >> i);}void update(int a, int b, const OperatorMonoid& x) {thrust(a += sz);thrust(b += sz - 1);for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {if (l & 1) lazy[l] = h(lazy[l], x), ++l;if (r & 1) --r, lazy[r] = h(lazy[r], x);}recalc(a);recalc(b);}Monoid query(int a, int b) {thrust(a += sz);thrust(b += sz - 1);Monoid L = M1, R = M1;for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {if (l & 1) L = f(L, reflect(l++));if (r & 1) R = f(reflect(--r), R);}return f(L, R);}Monoid operator[](const int& k) {return query(k, k + 1);}template< typename C >int find_subtree(int a, const C& check, Monoid& M, bool type) {while (a < sz) {propagate(a);Monoid nxt = type ? f(reflect(2 * a + type), M) : f(M, reflect(2 * a + type));if (check(nxt)) a = 2 * a + type;else M = nxt, a = 2 * a + 1 - type;}return a - sz;}template< typename C >int find_first(int a, const C& check) {Monoid L = M1;if (a <= 0) {if (check(f(L, reflect(1)))) return find_subtree(1, check, L, false);return -1;}thrust(a + sz);int b = sz;for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {if (a & 1) {Monoid nxt = f(L, reflect(a));if (check(nxt)) return find_subtree(a, check, L, false);L = nxt;++a;}}return -1;}template< typename C >int find_last(int b, const C& check) {Monoid R = M1;if (b >= sz) {if (check(f(reflect(1), R))) return find_subtree(1, check, R, true);return -1;}thrust(b + sz - 1);int a = sz;for (b += sz; a < b; a >>= 1, b >>= 1) {if (b & 1) {Monoid nxt = f(reflect(--b), R);if (check(nxt)) return find_subtree(b, check, R, true);R = nxt;}}return -1;}};class KMP {public:vector<ll> table;vector<ll> Pattern;KMP(vector<ll> a){build(a);}void build(vector<ll> a) {Pattern = a;table = vector<ll>(a.size() + 1, -1);int j = -1;for (int i = 0; i < a.size(); ++i) {while (j >= 0&&Pattern[i] != Pattern[j]) {j = table[j];}table[i + 1] = ++j;}return;}vector<ll> search(vector<ll> a) {vector<ll> ans;for (int i = 0, k = 0; i < a.size(); ++i) {while (k >= 0 && a[i] != Pattern[k]) k = table[k];++k;if (k >= Pattern.size()) {ans.push_back(i - Pattern.size() + 1);k = table[k];}}return ans;}};unsigned long xor128() {static unsigned long x = 123456789, y = 362436069, z = 521288629, w = 88675123;unsigned long t = (x ^ (x << 11));x = y; y = z; z = w;return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)));}void init() {iostream::sync_with_stdio(false);cout << fixed << setprecision(200);}#define int llvoid solve(){int n, k;cin >> n >> k;string s;cin >> s;string b = s.substr(0, k - 1);string c = s.substr(k - 1);if ((n - k + 1) % 2 == 1) {reverse(ALL(b));}cout << c << b << endl;}#undef intint main() {init();solve();}