結果
| 問題 |
No.1025 Modular Equation
|
| コンテスト | |
| ユーザー |
sbite
|
| 提出日時 | 2020-04-10 22:51:10 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,687 bytes |
| コンパイル時間 | 2,913 ms |
| コンパイル使用メモリ | 227,792 KB |
| 最終ジャッジ日時 | 2025-01-09 16:36:18 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 1 WA * 6 TLE * 25 |
ソースコード
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
#define _overload3(_1, _2, _3, name, ...) name
#define _rep(i, n) repi(i, 0, n)
#define repi(i, a, b) for (int i = (a); i < (b); ++i)
#define rep(...) _overload3(__VA_ARGS__, repi, _rep, )(__VA_ARGS__)
#define ALL(x) x.begin(), x.end()
#define chmax(x, y) x = max(x, y)
#define chmin(x, y) x = min(x, y)
using namespace std;
random_device rnd;
mt19937 mt(rnd());
using ll = long long;
using lld = long double;
using VI = vector<int>;
using VVI = vector<VI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using PII = pair<int, int>;
const double EPS = 1e-3;
const double PI = 3.1415926535897932384626433832795028841971;
const int IINF = 1 << 30;
const ll INF = 1ll << 60;
const ll MOD = 1000000007;
VVL nums;
ll p, n, k, b;
VL v(101010);
//FFT from https://ei1333.github.io/luzhiled/snippets/math/fast-fourier-transform.html
namespace FastFourierTransform
{
using real = long double;
struct C
{
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const { return C(x, -y); }
};
const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0},
{1, 0}};
vector<int> rev = {0, 1};
void ensure_base(int nbase)
{
if (nbase <= base)
return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for (int i = 0; i < (1 << nbase); i++)
{
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while (base < nbase)
{
real angle = PI * 2.0 / (1 << (base + 1));
for (int i = 1 << (base - 1); i < (1 << base); i++)
{
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector<C> &a, int n)
{
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; i++)
{
if (i < (rev[i] >> shift))
{
swap(a[i], a[rev[i] >> shift]);
}
}
for (int k = 1; k < n; k <<= 1)
{
for (int i = 0; i < n; i += 2 * k)
{
for (int j = 0; j < k; j++)
{
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
vector<int64_t> multiply(const vector<ll> &a, const vector<ll> &b)
{
int need = (int)a.size() + (int)b.size() - 1;
int nbase = 1;
while ((1 << nbase) < need)
nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector<C> fa(sz);
for (int i = 0; i < sz; i++)
{
int x = (i < (int)a.size() ? a[i] : 0);
int y = (i < (int)b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for (int i = 0; i <= (sz >> 1); i++)
{
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for (int i = 0; i < (sz >> 1); i++)
{
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector<int64_t> ret(need);
for (int i = 0; i < need; i++)
{
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
}; // namespace FastFourierTransform
ll pmod(ll base, ll n)
{
if (n == 0)
return 1;
ll prev = pmod(base, n / 2);
if (n % 2 == 0)
{
return (prev * prev) % p;
}
else
{
return (prev * prev * base) % p;
}
}
int main()
{
cin >> p >> n >> k >> b;
nums.resize(n);
rep(i, n) nums[i] = VL(p, 0);
rep(i, n) cin >> v[i];
ll tmp;
rep(i, n)
{
rep(j, p)
{
tmp = pmod(j, k);
tmp = (tmp * v[i]) % p;
nums[i][tmp]++;
}
}
VL ans = nums[0];
//cerr << "calc" << endl;
rep(i, 1, n)
{
vector<int64_t> nans = FastFourierTransform::multiply(ans, nums[i]);
rep(j, p)
{
ans[j] = 0;
}
rep(j, nans.size())
{
ans[j % p] += nans[j] % MOD;
ans[j % p] %= MOD;
}
}
cout << ans[b] << endl;
return 0;
}
sbite