結果
問題 |
No.160 最短経路のうち辞書順最小
|
ユーザー |
![]() |
提出日時 | 2020-04-10 23:15:41 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 15 ms / 5,000 ms |
コード長 | 2,192 bytes |
コンパイル時間 | 1,934 ms |
コンパイル使用メモリ | 181,732 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-16 00:19:04 |
合計ジャッジ時間 | 3,127 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 26 |
ソースコード
#include <bits/stdc++.h> using namespace std; #define each(i, c) for (auto& i : c) #define mkp(a, b) make_pair(a, b) typedef long long ll; typedef unsigned long long ull; typedef pair<ll, ll> Pll; const ll MOD = 1e9+7; template<typename P, typename Q> ostream& operator << (ostream& os, pair<P, Q> p) { os << "(" << p.first << ": " << p.second << ")"; return os; } template<typename T> ostream& operator << (ostream& os, vector<T> v) { os << "("; each (i, v) os << i << ", "; os << ")"; return os; } template<typename K, typename V> ostream& operator << (ostream& os, map<K, V> m) { os << "{"; each (i, m) os << i << ", "; os << "}"; return os; } typedef struct edge { ll to; ll cost; } edge; typedef vector<vector<edge>> G; // graph typedef vector<Pll> GR; // graph result (cost, vertex num) GR dijkstra(G &g, ll s) { // O(ElogV) priority_queue<Pll, vector<Pll>, greater<Pll>> q; GR res(g.size(), mkp(1e18, 0)); res[s] = mkp(0, s); q.push(res[s]); while (!q.empty()) { auto p = q.top(); q.pop(); ll cost = p.first; ll pos = p.second; if (res[pos].first < cost) continue; each (j, g[pos]) { ll to = j.to; ll to_cost = j.cost + cost; if (to_cost >= res[to].first) continue; res[to].first = to_cost; q.push(mkp(to_cost, to)); } } return res; } vector<ll> dijkstra_restore_path(G &g, GR &res, ll s, ll e) { ll from = e; vector<ll> path = {from}; while (from != s) { ll to = 1e18; each (i, g[from]) { if (res[from].first == res[i.to].first + i.cost) { to = min(to, i.to); } } from = to; path.push_back(from); } //reverse(path.begin(), path.end()); return path; } int main() { ll n, m, s, g; cin >> n >> m >> s >> g; G graph(n); for (ll i = 0; i < m; ++i) { ll a, b, c; cin >> a >> b >> c; graph[a].push_back(edge{.to = b, .cost = c}); graph[b].push_back(edge{.to = a, .cost = c}); } swap(s, g); auto res = dijkstra(graph, s); auto ans = dijkstra_restore_path(graph, res, s, g); for (ll i = 0; i < ans.size(); ++i) { cout << ans[i]; if (i == ans.size()-1) cout << endl; else cout << " "; } return 0; }