結果

問題 No.1025 Modular Equation
ユーザー beetbeet
提出日時 2020-04-10 23:16:36
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 7,474 bytes
コンパイル時間 2,795 ms
コンパイル使用メモリ 224,644 KB
実行使用メモリ 22,928 KB
最終ジャッジ日時 2024-09-16 00:26:50
合計ジャッジ時間 30,758 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 WA -
testcase_02 AC 10 ms
5,376 KB
testcase_03 AC 4 ms
5,376 KB
testcase_04 AC 4 ms
5,376 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 AC 1,047 ms
22,492 KB
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 AC 1,115 ms
22,796 KB
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}
template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}
using Int = long long;
const char newl = '\n';

template<typename T,T MOD = 1000000007>
struct Mint{
  static constexpr T mod = MOD;
  T v;
  Mint():v(0){}
  Mint(signed v):v(v){}
  Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}

  Mint pow(long long k){
    Mint res(1),tmp(v);
    while(k){
      if(k&1) res*=tmp;
      tmp*=tmp;
      k>>=1;
    }
    return res;
  }

  static Mint add_identity(){return Mint(0);}
  static Mint mul_identity(){return Mint(1);}

  Mint inv(){return pow(MOD-2);}

  Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
  Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
  Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
  Mint& operator/=(Mint a){return (*this)*=a.inv();}

  Mint operator+(Mint a) const{return Mint(v)+=a;}
  Mint operator-(Mint a) const{return Mint(v)-=a;}
  Mint operator*(Mint a) const{return Mint(v)*=a;}
  Mint operator/(Mint a) const{return Mint(v)/=a;}

  Mint operator-() const{return v?Mint(MOD-v):Mint(v);}

  bool operator==(const Mint a)const{return v==a.v;}
  bool operator!=(const Mint a)const{return v!=a.v;}
  bool operator <(const Mint a)const{return v <a.v;}

  static Mint comb(long long n,int k){
    Mint num(1),dom(1);
    for(int i=0;i<k;i++){
      num*=Mint(n-i);
      dom*=Mint(i+1);
    }
    return num/dom;
  }
};
template<typename T,T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T,T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}

namespace FFT{
  using dbl = double;

  struct num{
    dbl x,y;
    num(){x=y=0;}
    num(dbl x,dbl y):x(x),y(y){}
  };

  inline num operator+(num a,num b){
    return num(a.x+b.x,a.y+b.y);
  }
  inline num operator-(num a,num b){
    return num(a.x-b.x,a.y-b.y);
  }
  inline num operator*(num a,num b){
    return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
  }
  inline num conj(num a){
    return num(a.x,-a.y);
  }

  int base=1;
  vector<num> rts={{0,0},{1,0}};
  vector<int> rev={0,1};

  const dbl PI=asinl(1)*2;

  void ensure_base(int nbase){
    if(nbase<=base) return;

    rev.resize(1<<nbase);
    for(int i=0;i<(1<<nbase);i++)
      rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1));

    rts.resize(1<<nbase);
    while(base<nbase){
      dbl angle=2*PI/(1<<(base+1));
      for(int i=1<<(base-1);i<(1<<base);i++){
        rts[i<<1]=rts[i];
        dbl angle_i=angle*(2*i+1-(1<<base));
        rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i));
      }
      base++;
    }
  }

  void fft(vector<num> &as){
    int n=as.size();
    assert((n&(n-1))==0);

    int zeros=__builtin_ctz(n);
    ensure_base(zeros);
    int shift=base-zeros;
    for(int i=0;i<n;i++)
      if(i<(rev[i]>>shift))
        swap(as[i],as[rev[i]>>shift]);

    for(int k=1;k<n;k<<=1){
      for(int i=0;i<n;i+=2*k){
        for(int j=0;j<k;j++){
          num z=as[i+j+k]*rts[j+k];
          as[i+j+k]=as[i+j]-z;
          as[i+j]=as[i+j]+z;
        }
      }
    }
  }

  template<typename T>
  vector<long long> multiply(vector<T> &as,vector<T> &bs){
    int need=as.size()+bs.size()-1;
    int nbase=0;
    while((1<<nbase)<need) nbase++;
    ensure_base(nbase);

    int sz=1<<nbase;
    vector<num> fa(sz);
    for(int i=0;i<sz;i++){
      T x=(i<(int)as.size()?as[i]:0);
      T y=(i<(int)bs.size()?bs[i]:0);
      fa[i]=num(x,y);
    }
    fft(fa);

    num r(0,-0.25/sz);
    for(int i=0;i<=(sz>>1);i++){
      int j=(sz-i)&(sz-1);
      num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r;
      if(i!=j)
        fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r;
      fa[i]=z;
    }
    fft(fa);

    vector<long long> res(need);
    for(int i=0;i<need;i++)
      res[i]=round(fa[i].x);

    return res;
  }

};


template<typename T>
struct ArbitraryMod{
  using dbl=FFT::dbl;
  using num=FFT::num;

  vector<T> multiply(vector<T> as,vector<T> bs){
    int need=as.size()+bs.size()-1;
    int sz=1;
    while(sz<need) sz<<=1;
    vector<num> fa(sz),fb(sz);
    for(int i=0;i<(int)as.size();i++)
      fa[i]=num(as[i].v&((1<<15)-1),as[i].v>>15);
    for(int i=0;i<(int)bs.size();i++)
      fb[i]=num(bs[i].v&((1<<15)-1),bs[i].v>>15);

    fft(fa);fft(fb);

    dbl ratio=0.25/sz;
    num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1);
    for(int i=0;i<=(sz>>1);i++){
      int j=(sz-i)&(sz-1);
      num a1=(fa[i]+conj(fa[j]));
      num a2=(fa[i]-conj(fa[j]))*r2;
      num b1=(fb[i]+conj(fb[j]))*r3;
      num b2=(fb[i]-conj(fb[j]))*r4;
      if(i!=j){
        num c1=(fa[j]+conj(fa[i]));
        num c2=(fa[j]-conj(fa[i]))*r2;
        num d1=(fb[j]+conj(fb[i]))*r3;
        num d2=(fb[j]-conj(fb[i]))*r4;
        fa[i]=c1*d1+c2*d2*r5;
        fb[i]=c1*d2+c2*d1;
      }
      fa[j]=a1*b1+a2*b2*r5;
      fb[j]=a1*b2+a2*b1;
    }
    fft(fa);fft(fb);

    vector<T> cs(need);
    using ll = long long;
    for(int i=0;i<need;i++){
      ll aa=T(llround(fa[i].x)).v;
      ll bb=T(llround(fb[i].x)).v;
      ll cc=T(llround(fa[i].y)).v;
      cs[i]=T(aa+(bb<<15)+(cc<<30));
    }
    return cs;
  }
};


template<typename T>
struct Rint{
  static T mod;
  static void set_mod(T nmod){mod=nmod;}

  T v;
  Rint():v(0){}
  Rint(signed v):v(v){}
  Rint(long long t){v=t%mod;if(v<0) v+=mod;}

  Rint pow(long long k){
    Rint res(1),tmp(v);
    while(k){
      if(k&1) res*=tmp;
      tmp*=tmp;
      k>>=1;
    }
    return res;
  }

  static Rint add_identity(){return Rint(0);}
  static Rint mul_identity(){return Rint(1);}

  Rint inv(){return pow(mod-2);}

  Rint& operator+=(Rint a){v+=a.v;if(v>=mod)v-=mod;return *this;}
  Rint& operator-=(Rint a){v+=mod-a.v;if(v>=mod)v-=mod;return *this;}
  Rint& operator*=(Rint a){v=1LL*v*a.v%mod;return *this;}
  Rint& operator/=(Rint a){return (*this)*=a.inv();}

  Rint operator+(Rint a) const{return Rint(v)+=a;}
  Rint operator-(Rint a) const{return Rint(v)-=a;}
  Rint operator*(Rint a) const{return Rint(v)*=a;}
  Rint operator/(Rint a) const{return Rint(v)/=a;}

  Rint operator-() const{return v?Rint(mod-v):Rint(v);}

  bool operator==(const Rint a)const{return v==a.v;}
  bool operator!=(const Rint a)const{return v!=a.v;}
  bool operator <(const Rint a)const{return v <a.v;}
};
template<typename T> T Rint<T>::mod;
template<typename T>
ostream& operator<<(ostream &os,Rint<T> m){os<<m.v;return os;}

//INSERT ABOVE HERE
signed main(){
  cin.tie(0);
  ios::sync_with_stdio(0);

  int p,n,k,b;
  cin>>p>>n>>k>>b;
  vector<int> as(n);
  for(int i=0;i<n;i++) cin>>as[i];

  using R = Rint<int>;
  R::set_mod(p);

  vector<R> ps(p);
  for(int i=0;i<p;i++)
    ps[i]=R(i).pow(k);

  using M = Mint<int>;
  ArbitraryMod<M> arb;

  using Poly = vector<M>;

  M po{1};
  map<int, int> cnt,rpr;
  for(int i=0;i<n;i++){
    if(as[i]==0) po*=M(p);

    int o=p;
    for(int j=0;j<p;j++)
      chmin(o,(R(as[i])*ps[j]).v);
    cnt[o]++;
    rpr[o]=i;
  }

  auto mul=[&](Poly &as,Poly &bs){
    assert((int)as.size()==p);
    assert((int)bs.size()==p);
    auto cs=arb.multiply(as,bs);
    for(int j=p;j<(int)cs.size();j++) cs[j-p]+=cs[j];
    cs.resize(p);
    return cs;
  };

  Poly dp(p,0);
  dp[0]=1;
  for(auto tmp:cnt){
    int i=rpr[tmp.first];

    Poly ad(p,0);
    for(int j=0;j<p;j++)
      ad[(R(as[i])*ps[j]).v]+=M(1);

    int x=tmp.second;
    while(x){
      if(x&1) dp=mul(dp,ad);
      x>>=1;
      if(x) ad=mul(ad,ad);
    }
  }

  cout<<dp[b]*po<<newl;
  return 0;
}
0