結果
問題 | No.42 貯金箱の溜息 |
ユーザー | fumiphys |
提出日時 | 2020-04-11 00:02:45 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 42 ms / 5,000 ms |
コード長 | 6,384 bytes |
コンパイル時間 | 1,866 ms |
コンパイル使用メモリ | 176,108 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-16 03:54:30 |
合計ジャッジ時間 | 2,220 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 21 ms
5,248 KB |
testcase_01 | AC | 36 ms
5,248 KB |
testcase_02 | AC | 42 ms
5,376 KB |
ソースコード
// includes #include <bits/stdc++.h> using namespace std; // macros #define pb emplace_back #define mk make_pair #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define rep(i, n) FOR(i, 0, n) #define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--) #define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr) #define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr) #define whole(x) (x).begin(),(x).end() #define sz(x) ((int)(x).size()) #define bit(n) (1LL<<(n)) // functions template <typename T> void unique(T& c){c.erase(std::unique(c.begin(), c.end()), c.end());} template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;} template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;} template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;} template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << "(" << p.first << ", " << p.second << ")"; return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << "(" << itr->first << ", " << itr->second << ")"; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << "(" << itr->first << ", " << itr->second << ")"; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} // types using ll = long long int; using P = pair<int, int>; // constants const int inf = 1e9; const ll linf = 1LL << 50; const double EPS = 1e-10; const int mod = 1000000009; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, -1, 0, 1}; // io struct fast_io{ fast_io(){ios_base::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(20);} } fast_io_; template<typename T> T extgcd(T a, T b, T &x, T &y){ T d = a; if(b != 0){ d = extgcd(b, a % b, y, x); y -= (a / b) * x; }else{ x = 1, y = 0; } return d; } template <typename T> T modinv(T a, T m){ long long x = 0, y = 0; extgcd<long long>(a, m, x, y); x %= m; if(x < 0)x += m; return x; } template <typename T> T power(T a, T n, T mod) { T res = 1; T tmp = n; T curr = a; while(tmp){ if(tmp % 2 == 1){ res = (T)(res * curr % mod); } curr = (T)(curr * curr % mod); tmp >>= 1; } return res; } struct Mint{ const static ll default_mod = (ll)(1e9 + 9); ll MOD = default_mod; ll x = 0; ll get_mod(){ return MOD; } Mint(){} Mint(ll x_, ll MOD=default_mod): MOD(MOD){ x = x_; x %= MOD; if(x < 0)x += MOD; } Mint(const Mint &m){ x = m.x; MOD = m.MOD; } Mint &operator+=(const Mint &y){ x = (x + y.x) % MOD; if(x < 0)x += MOD; return *this; } Mint &operator-=(const Mint &y){ x = (x - y.x) % MOD; if(x < 0)x += MOD; return *this; } Mint &operator*=(const Mint &y){ x = (x * y.x) % MOD; if(x < 0)x += MOD; return *this; } Mint inverse() const{ return Mint(modinv<ll>(x, MOD), MOD); } Mint &operator/=(const Mint &y){ x = (x * y.inverse().x) % MOD; if(x < 0)x += MOD; return *this; } Mint operator-() const{ return Mint(-x, MOD); } Mint operator+(const Mint &y) const{ return Mint(*this) += y; } Mint operator-(const Mint &y) const{ return Mint(*this) -= y; } Mint operator*(const Mint &y) const{ return Mint(*this) *= y; } Mint operator/(const Mint &y) const{ return Mint(*this) /= y; } bool operator==(const Mint &y) const{ return x == y.x; } bool operator!=(const Mint &y) const{ return x != y.x; } Mint pow(long long k) const{ long long ret = power<long long>(x, k, MOD); return Mint(ret, MOD); } friend ostream& operator<<(ostream &os, const Mint &m){ return os << m.x; } friend istream& operator>>(istream &is, Mint &m){ ll t; is >> t; m = Mint(t); return is; } explicit operator long long() const{ return x; } }; template <typename T> struct LagrangeInterpolationM{ int n = 0; vector<T> x, y; vector<T> nume; LagrangeInterpolationM(){} LagrangeInterpolationM(const vector<T> &x, const vector<T> &y): x(x), y(y){ n = x.size() - 1; nume.resize(n + 1); for(int i = 0; i <= n; i++){ T t = T(1); for(int j = 0; j <= n; j++){ if(i == j)continue; t = t * (x[i] - x[j]); } nume[i] = t.inverse(); } } T val(T t){ T a = T(1); for(int i = 0; i <= n; i++){ if(t == x[i])return y[i]; a = a * (t - x[i]); } T res = T(0); for(int i = 0; i <= n; i++){ res += y[i] * nume[i] * (a / (t - x[i])); } return res; } }; int d[6] = {1, 5, 10, 50, 100, 500}; ll dp[10010]; int main(int argc, char const* argv[]) { dp[0] = 1; rep(i, 6){ rep(j, 10010){ if(j-d[i]>=0)(dp[j] += dp[j-d[i]]) %= mod; } } vector<LagrangeInterpolationM<Mint>> rip(500); rep(i, 500){ vector<Mint> x(7), y(7); rep(j, 7){ x[j] = j; y[j] = dp[i + 500 * j]; } rip[i] = LagrangeInterpolationM<Mint>(x, y); } int t; cin >> t; rep(i_, t){ ll m; cin >> m; cout << rip[m%500].val(m/500) << endl; } return 0; }