結果

問題 No.16 累乗の加算
ユーザー tomoyaatcoder
提出日時 2020-04-14 02:43:44
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 3,719 bytes
コンパイル時間 239 ms
コンパイル使用メモリ 13,056 KB
実行使用メモリ 11,904 KB
最終ジャッジ日時 2024-10-01 09:24:00
合計ジャッジ時間 1,714 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other RE * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
from sys import stdin
import heapq
import re
from itertools import permutations
from bisect import bisect_left, bisect_right
from collections import Counter, deque
from fractions import gcd
from math import factorial, sqrt
from functools import lru_cache, reduce
INF = 1 << 60
MOD = 1000000007
sys.setrecursionlimit(10 ** 7)
# UnionFind
class UnionFind():
def __init__(self, n):
self.n = n
self.parents = [-1] * n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return len(self.roots())
def all_group_members(self):
return {r: self.members(r) for r in self.roots()}
def __str__(self):
return '\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())
#
def dijkstra_heap(s, edge, n):
#s
d = [10**20] * n
used = [True] * n #True:
d[s] = 0
used[s] = False
edgelist = []
for a,b in edge[s]:
heapq.heappush(edgelist,a*(10**6)+b)
while len(edgelist):
minedge = heapq.heappop(edgelist)
#使
if not used[minedge%(10**6)]:
continue
v = minedge%(10**6)
d[v] = minedge//(10**6)
used[v] = False
for e in edge[v]:
if used[e[1]]:
heapq.heappush(edgelist,(e[0]+d[v])*(10**6)+e[1])
return d
#
def factorization(n):
arr = []
temp = n
for i in range(2, int(-(-n**0.5//1))+1):
if temp%i==0:
cnt=0
while temp%i==0:
cnt+=1
temp //= i
arr.append([i, cnt])
if temp!=1:
arr.append([temp, 1])
if arr==[]:
arr.append([n, 1])
return arr
# 2
def lcm(x, y):
return (x * y) // gcd(x, y)
#
def lcm_list(numbers):
return reduce(lcm, numbers, 1)
#
def gcd_list(numbers):
return reduce(gcd, numbers)
# limit
def eratosthenes(limit):
A = [i for i in range(2, limit+1)]
P = []
while True:
prime = min(A)
if prime > sqrt(limit):
break
P.append(prime)
i = 0
while i < len(A):
if A[i] % prime == 0:
A.pop(i)
continue
i += 1
for a in A:
P.append(a)
return P
#
# def pow_k(x, n):
# """
# O(log n)
# """
# if n == 0:
# return 1
# K = 1
# while n > 1:
# if n % 2 != 0:
# K *= x
# x *= x
# n //= 2
# return K * x
x, n = map(int, input().split())
a = list(map(int, input().split()))
ans = 0
for i in a:
ans += pow(x, i, 1000003)
ans %= 1000003
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0