結果
| 問題 | No.389 ロジックパズルの組み合わせ | 
| コンテスト | |
| ユーザー |  mkawa2 | 
| 提出日時 | 2020-04-15 00:41:51 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 546 ms / 2,000 ms | 
| コード長 | 2,190 bytes | 
| コンパイル時間 | 233 ms | 
| コンパイル使用メモリ | 82,432 KB | 
| 実行使用メモリ | 335,016 KB | 
| 最終ジャッジ日時 | 2024-10-01 18:29:35 | 
| 合計ジャッジ時間 | 43,755 ms | 
| ジャッジサーバーID (参考情報) | judge3 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 99 | 
ソースコード
from itertools import permutations
import sys
sys.setrecursionlimit(10 ** 6)
from bisect import *
from collections import *
from heapq import *
def II(): return int(sys.stdin.readline())
def MI(): return map(int, sys.stdin.readline().split())
def LI(): return list(map(int, sys.stdin.readline().split()))
def SI(): return sys.stdin.readline()[:-1]
def LLI(rows_number): return [LI() for _ in range(rows_number)]
int1 = lambda x: int(x) - 1
def MI1(): return map(int1, sys.stdin.readline().split())
def LI1(): return list(map(int1, sys.stdin.readline().split()))
p2D = lambda x: print(*x, sep="\n")
dij = [(1, 0), (0, 1), (-1, 0), (0, -1)]
# grobalにmdを設定すること
class mint:
    def __init__(self, x):
        self.__x = x % md
    def __str__(self):
        return str(self.__x)
    def __neg__(self):
        return mint(-self.__x)
    def __add__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x + other)
    def __sub__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x - other)
    def __rsub__(self, other):
        return mint(other - self.__x)
    def __mul__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x * other)
    __radd__ = __add__
    __rmul__ = __mul__
    def __truediv__(self, other):
        if isinstance(other, mint): other = other.__x
        return mint(self.__x * pow(other, md - 2, md))
    def __rtruediv__(self, other):
        return mint(other * pow(self.__x, md - 2, md))
    def __pow__(self, power, modulo=None):
        return mint(pow(self.__x, power, md))
md = 10**9+7
def nCr(com_n, com_r):
    if com_n < com_r: return 0
    return fac[com_n] * ifac[com_r] * ifac[com_n - com_r]
n_max = 1000005
fac = [mint(1)]
for i in range(1, n_max + 1): fac.append(fac[-1] * i)
ifac = [mint(1)] * (n_max + 1)
ifac[n_max] /= fac[n_max]
for i in range(n_max - 1, 1, -1): ifac[i] = ifac[i + 1] * (i + 1)
def main():
    m=II()
    hh=LI()
    if hh[0]==0:
        print(1)
        exit()
    w=m-sum(hh)
    if w<len(hh)-1:
        print("NA")
        exit()
    print(nCr(w+1,len(hh)))
main()
            
            
            
        