結果
問題 | No.49 算数の宿題 |
ユーザー | tomoyaatcoder |
提出日時 | 2020-04-15 18:02:50 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 29 ms / 5,000 ms |
コード長 | 4,384 bytes |
コンパイル時間 | 161 ms |
コンパイル使用メモリ | 13,184 KB |
実行使用メモリ | 11,392 KB |
最終ジャッジ日時 | 2024-06-02 07:29:32 |
合計ジャッジ時間 | 1,044 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 28 ms
11,392 KB |
testcase_01 | AC | 28 ms
11,392 KB |
testcase_02 | AC | 27 ms
11,264 KB |
testcase_03 | AC | 28 ms
11,392 KB |
testcase_04 | AC | 29 ms
11,264 KB |
testcase_05 | AC | 28 ms
11,392 KB |
testcase_06 | AC | 29 ms
11,392 KB |
testcase_07 | AC | 29 ms
11,392 KB |
testcase_08 | AC | 29 ms
11,392 KB |
testcase_09 | AC | 28 ms
11,264 KB |
ソースコード
import sys from sys import stdin import heapq import re from itertools import permutations from bisect import bisect_left, bisect_right from collections import Counter, deque from math import factorial, sqrt, gcd, ceil from functools import lru_cache, reduce INF = 1 << 60 MOD = 1000000007 sys.setrecursionlimit(10 ** 7) # UnionFind class UnionFind(): def __init__(self, n): self.n = n self.parents = [-1] * n def find(self, x): if self.parents[x] < 0: return x else: self.parents[x] = self.find(self.parents[x]) return self.parents[x] def union(self, x, y): x = self.find(x) y = self.find(y) if x == y: return if self.parents[x] > self.parents[y]: x, y = y, x self.parents[x] += self.parents[y] self.parents[y] = x def size(self, x): return -self.parents[self.find(x)] def same(self, x, y): return self.find(x) == self.find(y) def members(self, x): root = self.find(x) return [i for i in range(self.n) if self.find(i) == root] def roots(self): return [i for i, x in enumerate(self.parents) if x < 0] def group_count(self): return len(self.roots()) def all_group_members(self): return {r: self.members(r) for r in self.roots()} def __str__(self): return '\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots()) # ダイクストラ def dijkstra_heap(s, edge, n): #始点sから各頂点への最短距離 d = [10**20] * n used = [True] * n #True:未確定 d[s] = 0 used[s] = False edgelist = [] for a,b in edge[s]: heapq.heappush(edgelist,a*(10**6)+b) while len(edgelist): minedge = heapq.heappop(edgelist) #まだ使われてない頂点の中から最小の距離のものを探す if not used[minedge%(10**6)]: continue v = minedge%(10**6) d[v] = minedge//(10**6) used[v] = False for e in edge[v]: if used[e[1]]: heapq.heappush(edgelist,(e[0]+d[v])*(10**6)+e[1]) return d # 素因数分解 def factorization(n): arr = [] temp = n for i in range(2, int(-(-n**0.5//1))+1): if temp%i==0: cnt=0 while temp%i==0: cnt+=1 temp //= i arr.append([i, cnt]) if temp!=1: arr.append([temp, 1]) if arr==[]: arr.append([n, 1]) return arr # 2数の最小公倍数 def lcm(x, y): return (x * y) // gcd(x, y) # リストの要素の最小公倍数 def lcm_list(numbers): return reduce(lcm, numbers, 1) # リストの要素の最大公約数 def gcd_list(numbers): return reduce(gcd, numbers) # 素数判定 def is_prime(n): if n <= 1: return False p = 2 while True: if p ** 2 > n: break if n % p == 0: return False p += 1 return True # limit以下の素数を列挙 def eratosthenes(limit): A = [i for i in range(2, limit+1)] P = [] while True: prime = min(A) if prime > sqrt(limit): break P.append(prime) i = 0 while i < len(A): if A[i] % prime == 0: A.pop(i) continue i += 1 for a in A: P.append(a) return P # 同じものを含む順列 def permutation_with_duplicates(L): if L == []: return [[]] else: ret = [] # set(集合)型で重複を削除、ソート S = sorted(set(L)) for i in S: data = L[:] data.remove(i) for j in permutation_with_duplicates(data): ret.append([i] + j) return ret # ここから書き始める def solve(s): nums = re.split("[+*]", s) ops = [] # print(nums) for i in s: if i == "*": ops.append("+") elif i == "+": ops.append("*") ans = int(nums[0]) n = len(ops) # print("ops =", ops) for i in range(n): if ops[i] == "+": ans += int(nums[i + 1]) else: ans *= int(nums[i + 1]) print(ans) s = input() solve(s)