結果
| 問題 | No.52 よくある文字列の問題 | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2020-04-17 10:02:24 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 95 ms / 5,000 ms | 
| コード長 | 4,404 bytes | 
| コンパイル時間 | 390 ms | 
| コンパイル使用メモリ | 82,488 KB | 
| 実行使用メモリ | 73,516 KB | 
| 最終ジャッジ日時 | 2024-10-03 10:08:31 | 
| 合計ジャッジ時間 | 1,957 ms | 
| ジャッジサーバーID (参考情報) | judge4 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 11 | 
ソースコード
import sys
from sys import stdin
import heapq
import re
from itertools import permutations
from bisect import bisect_left, bisect_right
from collections import Counter, deque
from math import factorial, sqrt, gcd, ceil
from functools import lru_cache, reduce
INF = 1 << 60
MOD = 1000000007
sys.setrecursionlimit(10 ** 7)
# UnionFind
class UnionFind():
    def __init__(self, n):
        self.n = n
        self.parents = [-1] * n
    def find(self, x):
        if self.parents[x] < 0:
            return x
        else:
            self.parents[x] = self.find(self.parents[x])
            return self.parents[x]
    def union(self, x, y):
        x = self.find(x)
        y = self.find(y)
        if x == y:
            return
        if self.parents[x] > self.parents[y]:
            x, y = y, x
        self.parents[x] += self.parents[y]
        self.parents[y] = x
    def size(self, x):
        return -self.parents[self.find(x)]
    def same(self, x, y):
        return self.find(x) == self.find(y)
    def members(self, x):
        root = self.find(x)
        return [i for i in range(self.n) if self.find(i) == root]
    def roots(self):
        return [i for i, x in enumerate(self.parents) if x < 0]
    def group_count(self):
        return len(self.roots())
    def all_group_members(self):
        return {r: self.members(r) for r in self.roots()}
    def __str__(self):
        return '\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())
# ダイクストラ
def dijkstra_heap(s, edge, n):
    #始点sから各頂点への最短距離
    d = [10**20] * n
    used = [True] * n #True:未確定
    d[s] = 0
    used[s] = False
    edgelist = []
    for a,b in edge[s]:
        heapq.heappush(edgelist,a*(10**6)+b)
    while len(edgelist):
        minedge = heapq.heappop(edgelist)
        #まだ使われてない頂点の中から最小の距離のものを探す
        if not used[minedge%(10**6)]:
            continue
        v = minedge%(10**6)
        d[v] = minedge//(10**6)
        used[v] = False
        for e in edge[v]:
            if used[e[1]]:
                heapq.heappush(edgelist,(e[0]+d[v])*(10**6)+e[1])
    return d
# 素因数分解
def factorization(n):
    arr = []
    temp = n
    for i in range(2, int(-(-n**0.5//1))+1):
        if temp%i==0:
            cnt=0
            while temp%i==0:
                cnt+=1
                temp //= i
            arr.append([i, cnt])
    if temp!=1:
        arr.append([temp, 1])
    if arr==[]:
        arr.append([n, 1])
    return arr
# 2数の最小公倍数
def lcm(x, y):
    return (x * y) // gcd(x, y)
# リストの要素の最小公倍数
def lcm_list(numbers):
    return reduce(lcm, numbers, 1)
# リストの要素の最大公約数
def gcd_list(numbers):
    return reduce(gcd, numbers)
# 素数判定
def is_prime(n):
    if n <= 1:
        return False
    p = 2
    while True:
        if p ** 2 > n:
            break
        if n % p == 0:
            return False
        p += 1
    return True
# limit以下の素数を列挙
def eratosthenes(limit):
    A = [i for i in range(2, limit+1)]
    P = []
    while True:
        prime = min(A)
        
        if prime > sqrt(limit):
            break
            
        P.append(prime)
            
        i = 0
        while i < len(A):
            if A[i] % prime == 0:
                A.pop(i)
                continue
            i += 1
            
    for a in A:
        P.append(a)
            
    return P
# 同じものを含む順列
def permutation_with_duplicates(L):
    if L == []:
        return [[]]
    else:
        ret = []
        # set(集合)型で重複を削除、ソート
        S = sorted(set(L))
        for i in S:
            data = L[:]
            data.remove(i)
            for j in permutation_with_duplicates(data):
                ret.append([i] + j)
        return ret
# ここから書き始める
def solve(s):
    n = len(s)
    x = set([])
    for i in range(1 << n):
        bit = bin(i)[2:].zfill(n)
        new = ""
        old = s
        # print(bit)
        for j in bit:
            if j == "1":
                new += old[0]
                old = old[1:]
            else:
                # print("s =", s)
                new += old[-1]
                old = old[:-1]
        x.add(new)
    return len(x)
    
s = input()
print(solve(s))
            
            
            
        