結果
| 問題 |
No.213 素数サイコロと合成数サイコロ (3-Easy)
|
| コンテスト | |
| ユーザー |
HIR180
|
| 提出日時 | 2020-04-17 11:32:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 68 ms / 3,000 ms |
| コード長 | 9,317 bytes |
| コンパイル時間 | 5,149 ms |
| コンパイル使用メモリ | 241,136 KB |
| 最終ジャッジ日時 | 2025-01-09 19:32:28 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 2 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:375:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
375 | scanf("%lld%d%d",&n, &p, &c);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~
ソースコード
//Let's join Kaede Takagaki Fan Club !!
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
typedef pair<int,P> P1;
typedef pair<P,P> P2;
#define pu push
#define pb push_back
#define mp make_pair
#define eps 1e-7
#define INF 1000000000
#define fi first
#define sc second
#define rep(i,x) for(int i=0;i<x;i++)
#define repn(i,x) for(int i=1;i<=x;i++)
#define SORT(x) sort(x.begin(),x.end())
#define ERASE(x) x.erase(unique(x.begin(),x.end()),x.end())
#define POSL(x,v) (lower_bound(x.begin(),x.end(),v)-x.begin())
#define POSU(x,v) (upper_bound(x.begin(),x.end(),v)-x.begin())
#define all(x) x.begin(),x.end()
template<class T>
void dmp(T a){
rep(i,a.size()) cout << a[i] << " ";
cout << endl;
}
template<class T>
bool chmax(T&a, T b){
if(a < b){
a = b;
return 1;
}
return 0;
}
template<class T>
bool chmin(T&a, T b){
if(a > b){
a = b;
return 1;
}
return 0;
}
template<class T>
void g(T &a){
cin >> a;
}
template<class T>
void o(const T &a,bool space=false){
cout << a << (space?' ':'\n');
}
//ios::sync_with_stdio(false);
const int mod = 1000000007;//998244353
template<class T>
void add(T&a,T b){
a+=b;
while(a >= mod) a-=mod;
while(a < 0) a += mod;
}
template<const int md>
struct ntt{
inline void add(int &a, int b) { a += b; if(a >= md) a -= md; }
inline void sub(int &a, int b) { a -= b; if(a < 0) a += md; }
inline int add2(int a, int b) { a += b; if(a >= md) a -= md; return a;}
inline int sub2(int a, int b) { a -= b; if(a < 0) a += md; return a;}
inline int mul(int a, int b) { return (int)((ll)a*b%md); }
inline int power(int a, long long b) {
int res = 1;
while (b > 0) {
if (b & 1) res = mul(res, a);
a = mul(a, a);
b >>= 1;
}
return res;
}
inline int inv(int a) {
a %= md;
if (a < 0) a += md;
int b = md, u = 0, v = 1;
while (a) {
int t = b / a;
b -= t * a; swap(a, b);
u -= t * v; swap(u, v);
}
assert(b == 1);
if (u < 0) u += md;
return u;
}
int max_base, root;
vector<int> dw, idw;
ntt() {
int tmp = md - 1;
max_base = 0;
while (tmp % 2 == 0) {
tmp /= 2;
max_base++;
}
root = 2;
while (power(root, (md-1)>>1) == 1) root++;
dw.resize(max_base); idw.resize(max_base);
rep(i, max_base){
sub(dw[i], power(root, (md-1) >> (i+2)));
idw[i] = inv(dw[i]);
}
}
void fft(vector<int> &a, bool inv) {
const int n = a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
if(!inv){
for(int m=n;m>>=1;){
int w = 1;
for(int s=0,k=0; s<n; s += 2*m){
for(int i=s, j=s+m ; i < s+m; ++i, ++j) {
int x = a[i], y = mul(a[j], w);
a[j] = (x>=y?x-y:x+md-y);
a[i] = (x+y>=md?x+y-md:x+y);
}
w = mul(w, dw[__builtin_ctz(++k)]);
}
}
}
else{
for(int m=1;m<n;m*=2){
int w = 1;
for(int s=0,k=0; s<n; s += 2*m){
for(int i=s, j=s+m ; i < s+m; ++i, ++j) {
int x = a[i], y = a[j];
a[j] = (x>=y?x-y:x+md-y);
a[j] = mul(a[j], w);
a[i] = (x+y>=md?x+y-md:x+y);
}
w = mul(w, idw[__builtin_ctz(++k)]);
}
}
const int inv_sz = this->inv(n);
for(auto &&e:a) e = mul(e, inv_sz);
}
}
vector<int> multiply(vector<int> a, vector<int> b, int eq = 0) {
int need = a.size() + b.size() - 1;
int nbase = 0;
while ((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz);
b.resize(sz);
fft(a, 0);
if (eq) b = a; else fft(b, 0);
rep(i, sz) a[i] = mul(a[i], b[i]);
fft(a, 1);
a.resize(need);
return a;
}
vector<int> square(vector<int> a) {
return multiply(a, a, 1);
}
};
//fast_ntt.cpp
/*
167772161; //= 2^25 * 5 + 1
469762049; //= 2^26 * 7 + 1
754974721; //= 2^24 * 45 + 1
1045430273; //= 2^20 * 997 + 1
1051721729; //= 2^20 * 1003 + 1
1053818881; //= 2^20 * 1005 + 1
*/
template<const int md>
vector<int> anyntt(vector<int>&a, vector<int>&b, int eq = 0) {
//今回は2^20以下だからこっちの方が速い (らしい) (:maroon_kansha:)
const int m1 = 167772161, m2 = 469762049, m3 = 754974721;
ntt<m1>n1;
ntt<m2>n2;
ntt<m3>n3;
ntt<md>nn;
auto a1 = n1.multiply(a, b, eq);
auto a2 = n2.multiply(a, b, eq);
auto a3 = n3.multiply(a, b, eq);
const int n = a1.size();
vector<int>ret(n);
vector<ll>m; m = {m1, m2, m3};
vector<ll>r; r = {1, n2.inv(m1), n3.inv(n3.mul(m1, m2))};
int mm = nn.mul(m1, m2);
rep(i, n){
n2.add(a2[i], n2.sub2(m2, a1[i]));
int v1 = n2.mul(a2[i], r[1]);
n3.add(a3[i], n3.sub2(m3, n3.add2(a1[i], n3.mul(m1, v1))));
int v2 = n3.mul(a3[i], r[2]);
nn.add(a1[i], nn.add2(nn.mul(m1, v1), nn.mul(mm, v2)));
ret[i] = a1[i];
}
return ret;
}
ll modpow(ll x,ll n){
ll res=1;
while(n>0){
if(n&1) res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
typedef vector<int> vi;
vi shrink(vi a){
while(a.size() && a.back() == 0) a.pop_back();
return a;
}
vi mul_int(vi a, int M){
for(auto &b: a) b = (int)((ll)(b) * M) % mod;
return a;
}
vi mul(vi a, vi b, int eq = 0){
return anyntt<mod>(a, b, eq); //kaede.multiply(a, b, eq);
}
vi add(vi a, vi b,int M=-1){
if(a.size() < b.size()) swap(a,b);
for(int i=0;i<b.size();i++){
a[i]+=b[i];
if(a[i] < 0) a[i] += mod;
if(a[i] >= mod) a[i] -= mod;
}
if(M >= 0 && a.size() > M) a.resize(M);
return a;
}
vi sub(vi a, vi b,int M=-1){
if(a.size() < b.size()) a.resize(b.size(), 0);
for(int i=0;i<b.size();i++){
a[i]-=b[i];
if(a[i] < 0) a[i] += mod;
if(a[i] >= mod) a[i] -= mod;
}
if(M >= 0 && a.size() > M) a.resize(M);
return a;
}
vi lw(vi a, int x){
if(a.size() > x) a.resize(x);
return a;
}
/*vi inv(vi a,int M){
if(a.empty() || a[0] == 0) return vi();
vi ret(1);
ret[0] = modpow(a[0],mod-2);
int cur = 1;
int nxt = 1;
while(cur < M){
auto g = lw(ret, cur);
auto f = lw(a, cur*2);
f.resize(cur << 1); g.resize(cur << 1);
kaede.fft(f, 0);
kaede.fft(g, 0);
rep(i, f.size()) f[i] = kaede.mul(f[i], g[i]);
kaede.fft(f, 1);
f.erase(begin(f), begin(f) + cur);
f.resize(cur << 1), kaede.fft(f, 0);
rep(i, f.size()) {
f[i] = mod - kaede.mul(f[i], g[i]);
}
kaede.fft(f, 1);
ret.insert(end(ret), begin(f), begin(f)+ cur);
nxt++;
cur <<= 1;
}
assert(ret.size() >= M);
ret.resize(M);
return ret;
}*/
//slow
vi inv(vi a,int M){
if(a.empty() || a[0] == 0) return vi();
vi ret(M);
ret[0] = modpow(a[0],mod-2);
int cur = 1;
int nxt = 1;
while(cur < M){
auto at = lw(ret, cur);
ret = sub(add(at, at), mul(mul(at, at, 1), lw(a, cur*2)));
ret.resize(cur << 1);
nxt++;
cur <<= 1;
}
assert(ret.size() >= M);
ret.resize(M);
return ret;
}
vi modpow(vi a, ll n, vi b){
vi rb = b;
reverse(all(rb)); rb = inv(rb, rb.size());
auto get_mod = [&](vi v){
vi dv, u = v;
if(v.size() < b.size()) dv = {};
else{
int sz = v.size() - b.size() + 1;
vi y = lw(rb, sz);
reverse(all(v)); v = lw(v, sz);
dv = mul(v, y);
dv.resize(sz);
reverse(all(dv));
}
u = sub(u, mul(dv, b));
return shrink(u);
};
if(a.size() >= b.size()){
a = get_mod(a);
}
assert(a.size() < b.size());
vi ret = {1};
while(n){
if(n & 1){
ret = mul(ret, a);
ret = get_mod(ret);
}
n >>= 1;
a = mul(a, a, 1);
a = get_mod(a);
}
return ret;
}
template<class T>
vector<T>BerlekampMassey(vector<T>x){
vector<T>ls,cur;
T lf,ld;
rep(i,x.size()){
T t = 0;
for(int j=0;j<cur.size();j++){
t = (t+(ll)x[i-j-1]*cur[j])%mod;
}
if( ((t-x[i])%mod+mod)%mod == 0 ) continue;
if(!cur.size()){
cur.resize(i+1); lf = i; ld = (t-x[i])%mod;
continue;
}
T k = (ll) -(x[i]-t)*modpow(ld,mod-2)%mod;
vector<T>c(i-lf-1);
c.pb(k);
rep(j,ls.size()) c.pb((ll)-ls[j]*k%mod);
if(c.size() < cur.size()) c.resize(cur.size());
rep(j,cur.size()){
c[j]=(c[j]+cur[j]);
while(c[j] < 0) c[j] += mod;
while(c[j] >= mod) c[j] -= mod;
}
if(i-lf+(int)(ls.size()) >= (int)(cur.size())){
ls = cur, lf = i, ld = (t-x[i])%mod;
}
cur = c;
}
rep(i,cur.size()) cur[i] = (cur[i]%mod+mod)%mod;
return cur;
}
inline int mul(int a, int b) {return ((ll)a * b % mod); }
typedef vector<int> vi;
ll n;
int p, c, dp[2][305][3905];
vi f;
int v[2][6] = {{2, 3, 5, 7, 11, 13}, {4, 6, 8, 9, 10, 12}};
void make(int id){
dp[id][0][0] = 1;
for(int x=0;x<6;x++){
rep(i, 300){
rep(j, 3900){
if(dp[id][i][j] == 0) continue;
add(dp[id][i+1][j+v[id][x]], dp[id][i][j]);
}
}
}
}
int main(){
scanf("%lld%d%d",&n, &p, &c);
make(0);
make(1);
f.resize(p*13 + c*12 + 1);
rep(i, 3905) rep(j, 3905){
if(dp[0][p][i] == 0 || dp[1][c][j] == 0) continue;
add(f[i+j], mul(dp[0][p][i], dp[1][c][j]));
}
for(auto &a:f) a = (mod-a)%mod;
f[0] = 1;
int A = p*13 + c*12;
auto ans = inv(f, 3*A);
auto g = f;
reverse(all(g));
int ret = 0;
if(n <= 3*A){
for(int j=max(0, (int)n-A);j < n;j++){
int coef = 0;
for(int k=1;k<=A;k++){
if(j+k >= n){
add(coef, mod-f[k]);
}
add(ret, mul(ans[j], coef));
}
}
printf("%d\n", ret);
}
else{
auto v = modpow({0, 1}, n-A, g);
for(ll j=n-A;j<n;j++){
int M = 0;
rep(x,v.size()) add(M, mul(v[x], ans[x+(j-(n-A))]));
int coef = 0;
for(int k=1;k<=A;k++){
if(j+k >= n){
add(coef, mod-f[k]);
}
}
add(ret, mul(M, coef));
}
printf("%d\n", ret);
}
}
HIR180