結果

問題 No.1029 JJOOII 3
ユーザー b2563125
提出日時 2020-04-17 21:58:43
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 338 ms / 2,000 ms
コード長 5,806 bytes
コンパイル時間 1,792 ms
コンパイル使用メモリ 132,224 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-10-03 12:52:52
合計ジャッジ時間 7,483 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 38
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp:19: warning: "M_PI" redefined
   19 | #define M_PI 3.141592653589793238
      | 
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/cmath:45,
                 from main.cpp:14:
/usr/include/math.h:1151: note: this is the location of the previous definition
 1151 | # define M_PI           3.14159265358979323846  /* pi */
      | 

ソースコード

diff #
プレゼンテーションモードにする

#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<set>
#include<queue>
#include<stack>
#include<bitset>
#include<functional>
#include<map>
#include<iomanip>
#include<limits>
#include<unordered_set>
#include<cmath>
#include <numeric>
#include <array>
#include<utility>
#include <complex>
#define M_PI 3.141592653589793238
using namespace std;
long long p9 = 998244353;
long long p1 = 1000000007;
#define upperbound(v,val) upper_bound(v.begin(),v.end(),val)-v.begin()
#define lowerbound(v,val) lower_bound(v.begin(),v.end(),val)-v.begin()
#define int long long
#define ll long long
#define vel vector<ll>
#define vvel vector<vel>
#define rep(i,n) for(int i=0;i<n;i++)
#define sor(v) sort(v.begin(),v.end())
#define mmax(a,b) a=max(a,b)
#define mmin(a,b) a=min(a,b)
#define mkp(a,b) make_pair(a,b)
#define pin pair<ll,ll>
#define qin pair<pin,int>
#define V vector
#define Endl endl
#define veb vector<bool>
#define fcout cout << fixed << setprecision(15)
#define rev(s) reverse(s.begin(),s.end())
#define lower(h,val) (lower_bound(h.begin(),h.end(),val)-h.begin())
#define upper(h,val) (upper_bound(h.begin(),h.end(),val)-h.begin())
#define vveb V<veb>
#define omajinai cin.tie(0);ios::sync_with_stdio(false);
#define endl "\n"
#define pb push_back
#define all(v) v.begin(),v.end()
vel kai;
vel inv_kai;
vel inv;
int root(int x, vel& pa) {
if (pa[x] == -1) { return x; }
int ans = root(pa[x], pa); pa[x] = ans;
return ans;
}
bool mar(int x, int y, vel& pa) {
x = root(x, pa);
y = root(y, pa);
if (x != y) { pa[x] = y; }
return (x != y);
}
int gcd(int x, int y) {
if (x < y) { return gcd(y, x); }
if (y == 0) { return x; }
return gcd(y, x % y);
}
int lcm(ll x, ll y) {
x = abs(x); y = abs(y);
return x * (y / gcd(x, y));
}
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
void make_inv(int max_inv, int p) {
inv = vel(max_inv + 1, 1);
for (int i = 2; i <= max_inv; i++) {
inv[i] = p - ((p / i) * inv[p % i]) % p;
}
}
void make_kai(int max_kai, int p) {
kai = vel(max_kai + 1, 1);
inv_kai = kai;
make_inv(max_kai, p);
rep(i, max_kai) {
kai[i + 1] = kai[i] * (i + 1); kai[i + 1] %= p;
inv_kai[i + 1] = inv_kai[i] * inv[i + 1]; inv_kai[i + 1] %= p;
}
}
int com(int n, int r,int p) {
if ((n < 0) || (r < 0) || (r > n)) { return 0; }
int ans = (kai[n] * inv_kai[r]) % p;
return (ans * inv_kai[n - r]) % p;
}
int per(int n, int r,int p) {
if ((n < 0) || (r < 0) || (r > n)) { return 0; }
return (kai[n] * inv_kai[n - r]) % p;
}
vel uni(vel x) {
if (x.size() == 0) { return x; }
sor(x);
int n = x.size();
vel ans(1, x[0]);
for (int j = 1; j < n; j++) {
if (x[j - 1] != x[j]) { ans.push_back(x[j]); }
}
x = ans;
return x;
}
vel dijk(V<V<pin>>& way, int st, int inf) {
int n = way.size();
vel dist(n, inf); dist[st] = 0;
priority_queue<pin, vector<pin>, greater<pin>> pq;
pq.push(mkp(0, st));
veb is_checked(n, false);
while (!pq.empty()) {
pin x = pq.top(); pq.pop();
int pot = x.second;
if (!is_checked[pot]) {
is_checked[pot] = true;
for (auto y : way[pot]) {
int nex_dist = x.first + y.second;
int nex_pot = y.first;
if (dist[nex_pot] > nex_dist) {
dist[nex_pot] = nex_dist;
pq.push(mkp(nex_dist, y.first));
}
}
}
}
return dist;
}
V<V<pin>> way;
void make_tree(vvel& chi, vel& par,vel &dep,int n) {
way = V<V<pin>>(n);
rep(i, n - 1) {
int a, b; cin >> a >> b; a--; b--;
way[a].push_back(mkp(b, 1));
way[b].push_back(mkp(a, 1));
}
vel dist = dijk(way,0, n + 1);
par = vel(n, -1);
chi = vvel(n);
rep(i, n) {
for (auto nex : way[i]) {
int pot = nex.first;
if (dist[pot] > dist[i]) { chi[i].push_back(pot); }
else { par[i] = pot; }
}
}
dep = dist;
}
void pri(vel& v) {
if (v.size() == 0) { return; }
cout << v[0];
rep(i, v.size() - 1) { cout << " " << v[i + 1]; }
cout << endl;
return;
}
int modpow(int a, int n, int p) {
if (n == 0) { return 1; }
int m = n / 2;
int x = modpow(a, n / 2, p);
x *= x; x %= p;
if (n % 2 == 1) { x *= a; x %= p; }
return x;
}
vel dx = { 0,0,-1,1 };
vel dy = { 1,-1,0,0 };
vel sl(vel& g, int x) {
vel ans;
auto itr = upper_bound(all(g), x);
if (itr != g.end()) { ans.push_back(*itr); }
if (itr != g.begin()) { itr--; ans.push_back(*itr); }
return ans;
}
#define sq(n) ((n)*(n))
int f(int i, V<pin>& lis) {
int ans = 0;
int n = lis.size();
rep(j, n) {
ans += max(abs(lis[j].first - i), lis[j].second);
}
return ans;
}
int g(int i, V<pin>& lis) {
return f(i + 1, lis) - f(i, lis);
}
int solve(V<pin> &lis) {
int n = lis.size();
if (g(0, lis) >= 0) { return f(0, lis); }
if (g(n - 2, lis) < 0) { return f(n - 1, lis); }
int mi = 0; int pl = n - 2;
while (pl - mi > 1) {
int mid = (pl + mi) / 2;
if (g(mid, lis) >= 0) { pl = mid; }
else { mi = mid; }
}
return f(pl, lis);
}
signed main() {
omajinai;
int n, k; cin >> n >> k;
vel c(n); V<vvel> sum(n);
rep(i, n) {
string s; cin >> s >> c[i];
int sz = s.size();
sum[i] = vvel(3, vel(sz+1, 0));
string iro = "JOI";
rep(j, sz) {
rep(k, 3) {
sum[i][k][j + 1] = sum[i][k][j];
if (s[j] == iro[k]) {
sum[i][k][j+1]++;
}
}
}
}
int inf = p1 * 3*k;
vel dp(3*k + 1, inf); dp[0] = 0;
rep(i, 3*k) {
rep(j, n) {
int cnt = i;
int pot = 0;
rep(x, 3) {
if (x*k<=cnt&& cnt < (x+1)*k) {
auto itr = lower_bound(all(sum[j][x]), (x+1)*k-cnt+sum[j][x][pot]);
if (itr == sum[j][x].end()) { itr--; cnt += (*itr) - sum[j][x][pot]; break; }
else {
cnt = (x+1) * k;
pot = itr - sum[j][x].begin();
}
}
}
mmin(dp[cnt], dp[i] + c[j]);
}
}
if (dp[3 * k] == inf) { dp[3 * k] = -1; }
cout << dp[3 * k] << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0