結果
問題 | No.1030 だんしんぐぱーりない |
ユーザー |
![]() |
提出日時 | 2020-04-17 22:25:06 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 651 ms / 2,000 ms |
コード長 | 6,988 bytes |
コンパイル時間 | 1,902 ms |
コンパイル使用メモリ | 129,920 KB |
実行使用メモリ | 36,556 KB |
最終ジャッジ日時 | 2024-10-03 13:56:03 |
合計ジャッジ時間 | 15,239 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 40 |
コンパイルメッセージ
main.cpp:19: warning: "M_PI" redefined 19 | #define M_PI 3.141592653589793238 | In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/cmath:45, from main.cpp:14: /usr/include/math.h:1151: note: this is the location of the previous definition 1151 | # define M_PI 3.14159265358979323846 /* pi */ |
ソースコード
#include<iostream>#include<algorithm>#include<vector>#include<string>#include<set>#include<queue>#include<stack>#include<bitset>#include<functional>#include<map>#include<iomanip>#include<limits>#include<unordered_set>#include<cmath>#include <numeric>#include <array>#include<utility>#include <complex>#define M_PI 3.141592653589793238using namespace std;long long p9 = 998244353;long long p1 = 1000000007;#define upperbound(v,val) upper_bound(v.begin(),v.end(),val)-v.begin()#define lowerbound(v,val) lower_bound(v.begin(),v.end(),val)-v.begin()#define int long long#define ll long long#define vel vector<ll>#define vvel vector<vel>#define rep(i,n) for(int i=0;i<n;i++)#define sor(v) sort(v.begin(),v.end())#define mmax(a,b) a=max(a,b)#define mmin(a,b) a=min(a,b)#define mkp(a,b) make_pair(a,b)#define pin pair<ll,ll>#define qin pair<pin,int>#define V vector#define Endl endl#define veb vector<bool>#define fcout cout << fixed << setprecision(15)#define rev(s) reverse(s.begin(),s.end())#define lower(h,val) (lower_bound(h.begin(),h.end(),val)-h.begin())#define upper(h,val) (upper_bound(h.begin(),h.end(),val)-h.begin())#define vveb V<veb>#define omajinai cin.tie(0);ios::sync_with_stdio(false);#define endl "\n"#define pb push_back#define all(v) v.begin(),v.end()vel kai;vel inv_kai;vel inv;int root(int x, vel& pa) {if (pa[x] == -1) { return x; }int ans = root(pa[x], pa); pa[x] = ans;return ans;}bool mar(int x, int y, vel& pa) {x = root(x, pa);y = root(y, pa);if (x != y) { pa[x] = y; }return (x != y);}int gcd(int x, int y) {if (x < y) { return gcd(y, x); }if (y == 0) { return x; }return gcd(y, x % y);}int lcm(ll x, ll y) {x = abs(x); y = abs(y);return x * (y / gcd(x, y));}long long modinv(long long a, long long m) {long long b = m, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;}void make_inv(int max_inv, int p) {inv = vel(max_inv + 1, 1);for (int i = 2; i <= max_inv; i++) {inv[i] = p - ((p / i) * inv[p % i]) % p;}}void make_kai(int max_kai, int p) {kai = vel(max_kai + 1, 1);inv_kai = kai;make_inv(max_kai, p);rep(i, max_kai) {kai[i + 1] = kai[i] * (i + 1); kai[i + 1] %= p;inv_kai[i + 1] = inv_kai[i] * inv[i + 1]; inv_kai[i + 1] %= p;}}int com(int n, int r,int p) {if ((n < 0) || (r < 0) || (r > n)) { return 0; }int ans = (kai[n] * inv_kai[r]) % p;return (ans * inv_kai[n - r]) % p;}int per(int n, int r,int p) {if ((n < 0) || (r < 0) || (r > n)) { return 0; }return (kai[n] * inv_kai[n - r]) % p;}vel uni(vel x) {if (x.size() == 0) { return x; }sor(x);int n = x.size();vel ans(1, x[0]);for (int j = 1; j < n; j++) {if (x[j - 1] != x[j]) { ans.push_back(x[j]); }}x = ans;return x;}vel dijk(V<V<pin>>& way, int st, int inf) {int n = way.size();vel dist(n, inf); dist[st] = 0;priority_queue<pin, vector<pin>, greater<pin>> pq;pq.push(mkp(0, st));veb is_checked(n, false);while (!pq.empty()) {pin x = pq.top(); pq.pop();int pot = x.second;if (!is_checked[pot]) {is_checked[pot] = true;for (auto y : way[pot]) {int nex_dist = x.first + y.second;int nex_pot = y.first;if (dist[nex_pot] > nex_dist) {dist[nex_pot] = nex_dist;pq.push(mkp(nex_dist, y.first));}}}}return dist;}V<V<pin>> way;void make_tree(vvel& chi, vel& par,vel &dep,int n) {way = V<V<pin>>(n);rep(i, n - 1) {int a, b; cin >> a >> b; a--; b--;way[a].push_back(mkp(b, 1));way[b].push_back(mkp(a, 1));}vel dist = dijk(way,0, n + 1);par = vel(n, -1);chi = vvel(n);rep(i, n) {for (auto nex : way[i]) {int pot = nex.first;if (dist[pot] > dist[i]) { chi[i].push_back(pot); }else { par[i] = pot; }}}dep = dist;}void pri(vel& v) {if (v.size() == 0) { return; }cout << v[0];rep(i, v.size() - 1) { cout << " " << v[i + 1]; }cout << endl;return;}int modpow(int a, int n, int p) {if (n == 0) { return 1; }int m = n / 2;int x = modpow(a, n / 2, p);x *= x; x %= p;if (n % 2 == 1) { x *= a; x %= p; }return x;}vel dx = { 0,0,-1,1 };vel dy = { 1,-1,0,0 };vel sl(vel& g, int x) {vel ans;auto itr = upper_bound(all(g), x);if (itr != g.end()) { ans.push_back(*itr); }if (itr != g.begin()) { itr--; ans.push_back(*itr); }return ans;}#define sq(n) ((n)*(n))vvel disj_min(vel& v) {int n = v.size();vvel ret(22, vel(n));ret[0] = v;rep(i, 21) {rep(j, n) {int nex = j + (1 << i);if (nex < n) {ret[i + 1][j] = min(ret[i][j], ret[i][nex]);}else {ret[i + 1][j] = ret[i][j];}}}return ret;}vvel disj_max(vel& v) {int n = v.size();vvel ret(22, vel(n));ret[0] = v;rep(i, 21) {rep(j, n) {int nex = j + (1 << i);if (nex < n) {ret[i + 1][j] = max(ret[i][j], ret[i][nex]);}else {ret[i + 1][j] = ret[i][j];}}}return ret;}int find_min(vvel& dv, int l, int r) {int i = 21;while (l + (1 << i) > r) {i--;}return min(dv[i][l], dv[i][r - (1 << i)]);}int find_max(vvel& dv, int l, int r) {int i = 21;while (l + (1 << i) > r) {i--;}return max(dv[i][l], dv[i][r - (1 << i)]);}/*void pri(vel& v) {if (v.size() == 0) { return; }cout << v[0];rep(i, v.size() - 1) { cout << " " << v[i + 1]; }cout << endl;return;}*/vvel dbl(vel& v) {vvel ans(20, vel(v));int n = v.size();rep(i, 19) {rep(j, n) {ans[i + 1][j] = ans[i][ans[i][j]];}}return ans;}int lca(int s, int t, int diff, vvel& pa) {if (diff < 0) { return lca(t, s, -diff, pa); }rep(i, 19) {if ((diff & (1 << i)) != 0) {s = pa[i][s];}}for (int i = 19; i >= 0; i--) {if (pa[i][s] != pa[i][t]) {s = pa[i][s];t = pa[i][t];}}if (s != t) {s = pa[0][s];}return s;}vvel dpa;vel dist;int qlc(int a, int b) {if (a == -1) { return b; }if (b == -1) { return a; }return lca(a, b, dist[a] - dist[b], dpa);}int sz = 1 << 17;vel seg(sz * 2,-1);void cha(int i,int val) {i += sz;seg[i] = val;i /= 2;while (i != 0) {seg[i] = qlc(seg[2 * i], seg[2 * i + 1]); i /= 2;}}int gt(int l, int r) {int x = -1;l += sz; r += sz;while (l < r) {if (l & 1) { x = qlc(x, seg[l++]); }if (r & 1) { x = qlc(x, seg[--r]); }l /= 2; r /= 2;}return x;}void solve(int i,vvel &chi,vel &pa, vel& c) {if (pa[i] != -1) { mmax(c[i], c[pa[i]]); }for (auto x : chi[i]) { solve(x, chi, pa, c); }}signed main() {omajinai;int n, k, q; cin >> n >> k >> q;vel c(n);rep(i, n) { cin >> c[i]; }vel a(k);rep(i, k) { cin >> a[i]; a[i]--; }vel pa; vvel chi;make_tree(chi, pa, dist, n); pa[0] = 0;dpa = dbl(pa);solve(0,chi,pa, c);rep(i, k) {cha(i, a[i]);}rep(i, q) {int t; cin >> t;if (t == 1) {int x, y; cin >> x >> y; x--; y--;a[x] = y;cha(x, a[x]);}else {int l, r; cin >> l >> r;l--;cout << c[gt(l, r)] << endl;}}return 0;}