結果

問題 No.1030 だんしんぐぱーりない
ユーザー emthrm
提出日時 2020-04-17 22:58:33
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 274 ms / 2,000 ms
コード長 4,745 bytes
コンパイル時間 2,829 ms
コンパイル使用メモリ 212,604 KB
最終ジャッジ日時 2025-01-09 20:35:51
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
// const int MOD = 998244353;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(20);
}
} iosetup;
using CostType = int;
struct Edge {
int src, dst; CostType cost;
Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
inline bool operator<(const Edge &x) const {
return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
}
inline bool operator<=(const Edge &x) const { return !(x < *this); }
inline bool operator>(const Edge &x) const { return x < *this; }
inline bool operator>=(const Edge &x) const { return !(*this < x); }
};
struct LCADoubling {
vector<int> depth;
vector<CostType> dist;
LCADoubling(const vector<vector<Edge>> &graph) : graph(graph) {
n = graph.size();
depth.resize(n);
dist.resize(n);
while ((1 << table_h) <= n) ++table_h;
parent.resize(table_h, vector<int>(n));
}
void build(int root = 0) {
dfs(-1, root, 0, 0);
for (int i = 0; i + 1 < table_h; ++i) REP(ver, n) {
parent[i + 1][ver] = (parent[i][ver] == -1 ? -1 : parent[i][parent[i][ver]]);
}
}
int query(int u, int v) {
if (depth[u] > depth[v]) swap(u, v);
REP(i, table_h) {
if ((depth[v] - depth[u]) >> i & 1) v = parent[i][v];
}
if (u == v) return u;
for (int i = table_h - 1; i >= 0; --i) {
if (parent[i][u] != parent[i][v]) {
u = parent[i][u];
v = parent[i][v];
}
}
return parent[0][u];
}
CostType distance(int u, int v) { return dist[u] + dist[v] - dist[query(u, v)] * 2; }
private:
int n, table_h = 1;
vector<vector<Edge>> graph;
vector<vector<int>> parent;
void dfs(int par, int ver, int now_depth, CostType now_dist) {
depth[ver] = now_depth;
dist[ver] = now_dist;
parent[0][ver] = par;
for (const Edge &e : graph[ver]) {
if (e.dst != par) dfs(ver, e.dst, now_depth + 1, now_dist + e.cost);
}
}
};
template <typename Monoid>
struct SegmentTree {
using Fn = function<Monoid(Monoid, Monoid)>;
SegmentTree(int sz, Fn fn, const Monoid UNITY) : fn(fn), UNITY(UNITY) {
init(sz);
dat.assign(n << 1, UNITY);
}
SegmentTree(const vector<Monoid> &a, Fn fn, const Monoid UNITY) : fn(fn), UNITY(UNITY) {
int a_sz = a.size();
init(a_sz);
dat.resize(n << 1);
REP(i, a_sz) dat[i + n] = a[i];
for (int i = n - 1; i > 0; --i) dat[i] = fn(dat[i << 1], dat[(i << 1) + 1]);
}
void update(int node, Monoid val) {
node += n;
dat[node] = val;
while (node >>= 1) dat[node] = fn(dat[node << 1], dat[(node << 1) + 1]);
}
Monoid query(int left, int right) {
Monoid l_res = UNITY, r_res = UNITY;
for (left += n, right += n; left < right; left >>= 1, right >>= 1) {
if (left & 1) l_res = fn(l_res, dat[left++]);
if (right & 1) r_res = fn(dat[--right], r_res);
}
return fn(l_res, r_res);
}
Monoid operator[](const int idx) const { return dat[idx + n]; }
private:
int n = 1;
Fn fn;
const Monoid UNITY;
vector<Monoid> dat;
void init(int sz) { while (n < sz) n <<= 1; }
};
int main() {
int n, k, q; cin >> n >> k >> q;
vector<int> c(n), a(k);
REP(i, n) cin >> c[i];
REP(i, k) cin >> a[i], --a[i];
// REP(i, k) cout << a[i] << " \n"[i + 1 == k];
vector<vector<Edge>> graph(n);
REP(_, n - 1) {
int e, f; cin >> e >> f; --e; --f;
graph[f].emplace_back(f, e, 1);
}
LCADoubling lca(graph);
lca.build(0);
SegmentTree<int> seg(a, [&](int l, int r) { if (l == -1) return r; if (r == -1) return l; return lca.query(l, r); }, -1);
vector<int> dp(n, 0);
function<void(int)> dfs = [&](int ver) {
chmax(dp[ver], c[ver]);
for (const Edge &e : graph[ver]) {
chmax(dp[e.dst], dp[ver]);
dfs(e.dst);
}
};
dfs(0);
while (q--) {
int t; cin >> t;
if (t == 1) {
int x, y; cin >> x >> y; --x; --y;
seg.update(x, y);
} else if (t == 2) {
int l, r; cin >> l >> r; --l; --r;
cout << dp[seg.query(l, r + 1)] << '\n';
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0