結果

問題 No.1029 JJOOII 3
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-04-17 23:13:49
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
MLE  
実行時間 -
コード長 9,405 bytes
コンパイル時間 2,023 ms
コンパイル使用メモリ 198,168 KB
実行使用メモリ 813,952 KB
最終ジャッジ日時 2024-10-03 15:14:14
合計ジャッジ時間 4,176 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,824 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 MLE -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region kyopro_template
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define inc(...)    \
  char __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
using namespace std;
void solve();
using ll = long long;
template <class T = ll>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ll ceil(T a, U b) {
  return (a + b - 1) / b;
}
constexpr ll TEN(int n) {
  ll ret = 1, x = 10;
  while (n) {
    if (n & 1) ret *= x;
    x *= x;
    n >>= 1;
  }
  return ret;
}

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << " ";
  out(u...);
}
template <typename T>
void die(T x) {
  out(x);
  exit(0);
}

#ifdef NyaanDebug
#include "NyaanDebug.h"
#define trc(...)                   \
  do {                             \
    cerr << #__VA_ARGS__ << " = "; \
    dbg_out(__VA_ARGS__);          \
  } while (0)
#define trca(v, N)       \
  do {                   \
    cerr << #v << " = "; \
    array_out(v, N);     \
  } while (0)
#define trcc(v)                             \
  do {                                      \
    cerr << #v << " = {";                   \
    each(x, v) { cerr << " " << x << ","; } \
    cerr << "}" << endl;                    \
  } while (0)
#else
#define trc(...)
#define trca(...)
#define trcc(...)
int main() { solve(); }
#endif

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

#pragma endregion

constexpr long long MOD = /** 1000000007;  //*/ 998244353;

// popcount
inline int popcount(unsigned long long a) { return __builtin_popcountll(a); }
// least significant bit
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
// most significant bit
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
// get i-th bit
template <typename T>
inline int getbit(T a, int i) {
  return (a >> i) & 1;
}
// set i-th bit
template <typename T>
inline void setbit(T &a, int i) {
  a |= (1LL << i);
}
// delete i-th bit
template <typename T>
inline void delbit(T &a, int i) {
  a &= ~(1LL << i);
}

// lower_bound
template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
// upper_bound
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

// cumulative sum
template <typename T>
vector<T> mkrui(const vector<T> &v) {
  vector<T> ret(v.size() + 1);
  for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  return ret;
};

// order
template <typename T>
vector<int> mkord(const vector<T> &v, function<bool(T, T)> f) {
  vector<int> ord(v.size());
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

// unique
template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int to, T cost) : src(-1), to(to), cost(cost) {}
  edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].pb(y);
    if (!is_directed) g[y].pb(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].eb(x, y, c);
    if (!is_directed) g[y].eb(y, x, c);
  }
  return g;
}

// Depth of Rooted Tree
// unvisited nodes : d = -1
vector<int> Depth(UnweightedGraph &g, int start = 0) {
  vector<int> d(g.size(), -1);
  auto dfs = [&](auto rec, int cur, int par = -1) -> void {
    d[cur] = par == -1 ? 0 : d[par] + 1;
    each(dst, g[cur]) {
      if (dst == par) continue;
      rec(rec, dst, cur);
    }
  };
  dfs(dfs, start);
  return d;
}

// Diameter of Tree
pair<int, int> Diameter(UnweightedGraph &g, int start = 0) {
  auto d = Depth(g, start);
  int u = max_element(begin(d), end(d)) - begin(d);
  d = Depth(g, u);
  int v = max_element(begin(d), end(d)) - begin(d);
  return make_pair(u, v);
}

// unreachable -> -1
template <typename T>
vector<T> dijkstra(WeightedGraph<T> &g, int start = 0) {
  using P = pair<T, int>;
  int N = (int)g.size();
  T INF = numeric_limits<T>::max() / 2;
  vector<T> d(N, INF);
  priority_queue<P, vector<P>, greater<P>> Q;
  d[start] = 0;
  Q.emplace(0, start);
  while (!Q.empty()) {
    P p = Q.top();
    Q.pop();
    int cur = p.second;
    if (d[cur] < p.first) continue;
    for (auto dst : g[cur]) {
      if (d[cur] + dst.cost < d[dst]) {
        d[dst] = d[cur] + dst.cost;
        Q.emplace(d[dst], dst);
      }
    }
  }
  return d;
}

void solve() {
  ini(N, K);
  vs S(N);
  vl C(N);
  in2(S, C);

  WeightedGraph<ll> g(K * 3 + 1);
  rep(i, K * 3) g[i].eb(i + 1, i, 0);

  vl jj(K + 1, infLL);
  vl oo(K + 1, infLL);
  vl ii(K + 1, infLL);
  vvl jo(K + 1, vl(K + 1, infLL));
  vvl oi(K + 1, vl(K + 1, infLL));

  auto f = [&](string &s, ll c) {
    // 累積和
    int n = sz(s);
    vi J(n + 1), O(n + 1), I(n + 1);
    rep(i, n) {
      J[i + 1] = J[i];
      O[i + 1] = O[i];
      I[i + 1] = I[i];
      if (s[i] == 'J') J[i + 1]++;
      if (s[i] == 'O') O[i + 1]++;
      if (s[i] == 'I') I[i + 1]++;
    }
    amin(jj[min(K, J[n])], c);
    amin(oo[min(K, O[n])], c);
    amin(ii[min(K, I[n])], c);
    rep(i, n) {
      int Jl = J[i];
      int Or = O[n] - O[i];
      int Ol = O[i];
      int Ir = I[n] - I[i];
      amin(jo[min(K, Jl)][min(K, Or)], c);
      amin(oi[min(K, Ol)][min(K, Ir)], c);
    }
  };
  rep(i, N) f(S[i], C[i]);
  trc(jj);
  trc(oo);
  trc(ii);
  trc(jo, oi);

  auto ng = [](vl a) {
    rep1(i, sz(a) - 1) if (a[i] != infLL) return false;
    return true;
  };
  if (ng(jj) || ng(oo) || ng(ii)) die(-1);

  rep(i, K) rep1(j, K) {
    if (i + j > K) continue;
    if (jj[j] != infLL) g[i].eb(i, i + j, jj[j]);
    if (oo[j] != infLL) g[i + K].eb(i + K, i + j + K, oo[j]);
    if (ii[j] != infLL) g[i + K * 2].eb(i + K * 2, i + j + K * 2, ii[j]);
  }

  rep1(j, K) rep1(k, K) {
    if (jo[j][k] != infLL) g[K - j].eb(K - j, K + k, jo[j][k]);
    if (oi[j][k] != infLL) g[2 * K - j].eb(2 * K - j, 2 * K + k, oi[j][k]);
  }

  auto d = dijkstra(g);
  out(d[3 * K]);
}
0