結果
| 問題 |
No.1029 JJOOII 3
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-04-17 23:16:55 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,471 bytes |
| コンパイル時間 | 2,492 ms |
| コンパイル使用メモリ | 196,348 KB |
| 実行使用メモリ | 22,400 KB |
| 最終ジャッジ日時 | 2024-10-03 15:17:03 |
| 合計ジャッジ時間 | 4,105 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 11 WA * 27 |
ソースコード
#pragma region kyopro_template
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define inc(...) \
char __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
using namespace std;
void solve();
using ll = long long;
template <class T = ll>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ll ceil(T a, U b) {
return (a + b - 1) / b;
}
constexpr ll TEN(int n) {
ll ret = 1, x = 10;
while (n) {
if (n & 1) ret *= x;
x *= x;
n >>= 1;
}
return ret;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
cout << t;
if (sizeof...(u)) cout << " ";
out(u...);
}
template <typename T>
void die(T x) {
out(x);
exit(0);
}
#ifdef NyaanDebug
#include "NyaanDebug.h"
#define trc(...) \
do { \
cerr << #__VA_ARGS__ << " = "; \
dbg_out(__VA_ARGS__); \
} while (0)
#define trca(v, N) \
do { \
cerr << #v << " = "; \
array_out(v, N); \
} while (0)
#define trcc(v) \
do { \
cerr << #v << " = {"; \
each(x, v) { cerr << " " << x << ","; } \
cerr << "}" << endl; \
} while (0)
#else
#define trc(...)
#define trca(...)
#define trcc(...)
int main() { solve(); }
#endif
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
#pragma endregion
constexpr long long MOD = /** 1000000007; //*/ 998244353;
// popcount
inline int popcount(unsigned long long a) { return __builtin_popcountll(a); }
// least significant bit
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
// most significant bit
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
// get i-th bit
template <typename T>
inline int getbit(T a, int i) {
return (a >> i) & 1;
}
// set i-th bit
template <typename T>
inline void setbit(T &a, int i) {
a |= (1LL << i);
}
// delete i-th bit
template <typename T>
inline void delbit(T &a, int i) {
a &= ~(1LL << i);
}
// lower_bound
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
// upper_bound
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
// cumulative sum
template <typename T>
vector<T> mkrui(const vector<T> &v) {
vector<T> ret(v.size() + 1);
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
return ret;
};
// order
template <typename T>
vector<int> mkord(const vector<T> &v, function<bool(T, T)> f) {
vector<int> ord(v.size());
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
// unique
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename T>
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;
// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
UnweightedGraph g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
if (is_1origin) x--, y--;
g[x].pb(y);
if (!is_directed) g[y].pb(x);
}
return g;
}
// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
WeightedGraph<T> g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
cin >> c;
if (is_1origin) x--, y--;
g[x].eb(x, y, c);
if (!is_directed) g[y].eb(y, x, c);
}
return g;
}
// Depth of Rooted Tree
// unvisited nodes : d = -1
vector<int> Depth(UnweightedGraph &g, int start = 0) {
vector<int> d(g.size(), -1);
auto dfs = [&](auto rec, int cur, int par = -1) -> void {
d[cur] = par == -1 ? 0 : d[par] + 1;
each(dst, g[cur]) {
if (dst == par) continue;
rec(rec, dst, cur);
}
};
dfs(dfs, start);
return d;
}
// Diameter of Tree
pair<int, int> Diameter(UnweightedGraph &g, int start = 0) {
auto d = Depth(g, start);
int u = max_element(begin(d), end(d)) - begin(d);
d = Depth(g, u);
int v = max_element(begin(d), end(d)) - begin(d);
return make_pair(u, v);
}
// unreachable -> -1
template <typename T>
vector<T> dijkstra(WeightedGraph<T> &g, int start = 0) {
using P = pair<T, int>;
int N = (int)g.size();
T INF = numeric_limits<T>::max() / 2;
vector<T> d(N, INF);
priority_queue<P, vector<P>, greater<P>> Q;
d[start] = 0;
Q.emplace(0, start);
while (!Q.empty()) {
P p = Q.top();
Q.pop();
int cur = p.second;
if (d[cur] < p.first) continue;
for (auto dst : g[cur]) {
if (d[cur] + dst.cost < d[dst]) {
d[dst] = d[cur] + dst.cost;
Q.emplace(d[dst], dst);
}
}
}
return d;
}
void solve() {
ini(N, K);
vs S(N);
vl C(N);
in2(S, C);
WeightedGraph<ll> g(K * 3 + 1);
rep(i, K * 3) g[i].eb(i + 1, i, 0);
int L = K;
K = 80;
vl jj(K + 1, infLL);
vl oo(K + 1, infLL);
vl ii(K + 1, infLL);
vvl jo(K + 1, vl(K + 1, infLL));
vvl oi(K + 1, vl(K + 1, infLL));
auto f = [&](string &s, ll c) {
// 累積和
int n = sz(s);
vi J(n + 1), O(n + 1), I(n + 1);
rep(i, n) {
J[i + 1] = J[i];
O[i + 1] = O[i];
I[i + 1] = I[i];
if (s[i] == 'J') J[i + 1]++;
if (s[i] == 'O') O[i + 1]++;
if (s[i] == 'I') I[i + 1]++;
}
amin(jj[min(K, J[n])], c);
amin(oo[min(K, O[n])], c);
amin(ii[min(K, I[n])], c);
rep(i, n) {
int Jl = J[i];
int Or = O[n] - O[i];
int Ol = O[i];
int Ir = I[n] - I[i];
amin(jo[min(K, Jl)][min(K, Or)], c);
amin(oi[min(K, Ol)][min(K, Ir)], c);
}
};
rep(i, N) f(S[i], C[i]);
//trc(jj);
//trc(oo);
//trc(ii);
//trc(jo, oi);
auto ng = [](vl a) {
rep1(i, sz(a) - 1) if (a[i] != infLL) return false;
return true;
};
if (ng(jj) || ng(oo) || ng(ii)) die(-1);
rep(i, min(K,L)) rep1(j, min(K,L)) {
if (i + j > min(K,L)) continue;
if (jj[j] != infLL) g[i].eb(i, i + j, jj[j]);
if (oo[j] != infLL) g[i + L].eb(i + L, i + j + L, oo[j]);
if (ii[j] != infLL) g[i + L * 2].eb(i + L * 2, i + j + L * 2, ii[j]);
}
rep1(j, min(K,L)) rep1(k, min(K,L)) {
if (jo[j][k] != infLL) g[L - j].eb(L - j, L + k, jo[j][k]);
if (oi[j][k] != infLL) g[2 * L - j].eb(2 * L - j, 2 * L + k, oi[j][k]);
}
auto d = dijkstra(g);
out(d[3 * L]);
}