結果
| 問題 |
No.803 Very Limited Xor Subset
|
| コンテスト | |
| ユーザー |
hashiryo
|
| 提出日時 | 2020-04-22 22:40:43 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 4 ms / 2,000 ms |
| コード長 | 6,702 bytes |
| コンパイル時間 | 2,339 ms |
| コンパイル使用メモリ | 194,900 KB |
| 実行使用メモリ | 6,824 KB |
| 最終ジャッジ日時 | 2024-10-12 07:20:21 |
| 合計ジャッジ時間 | 3,915 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 43 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod)) {}
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) { return *this *= p.inverse(); }
ModInt operator-() const { return ModInt() - *this; }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b) t = a / b, swap(a -= t * b, b), swap(u -= t * v, v);
return ModInt(u);
}
ModInt pow(int64_t e) const {
ModInt ret(1);
for (ModInt b = *this; e; e >>= 1, b *= b)
if (e & 1) ret *= b;
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; }
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int modulo() { return mod; }
};
struct BitMatrix {
private:
vector<vector<short>> a;
public:
BitMatrix() {}
BitMatrix(size_t n, size_t m) : a(n, vector<short>(m, 0)) {}
BitMatrix(size_t n) : BitMatrix(n, n) {}
inline const vector<short> &operator[](size_t k) const { return a[k]; }
inline vector<short> &operator[](size_t k) { return a[k]; }
size_t height() const { return a.size(); }
size_t width() const { return a[0].size(); }
static BitMatrix I(size_t n) {
BitMatrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return mat;
}
BitMatrix operator+(const BitMatrix &b) const {
size_t n = height(), m = width();
BitMatrix c(n, m);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) c[i][j] = (*this)[i][j] ^ b[i][j];
return c;
}
BitMatrix operator*(const BitMatrix &b) const {
if (width() <= 64) return mul<64>(b);
if (width() <= 2600) return mul<2600>(b);
return mul<100010>(b);
}
BitMatrix &operator+=(const BitMatrix &b) { return *this = (*this) + b; }
BitMatrix &operator*=(const BitMatrix &b) { return *this = (*this) * b; }
bool operator==(const BitMatrix &b) const { return a == b.a; }
BitMatrix pow(uint64_t e) const {
BitMatrix ret = I(height());
for (BitMatrix base = *this; e; e >>= 1, base *= base)
if (e & 1) ret *= base;
return ret;
}
static pair<BitMatrix, BitMatrix> Gauss_Jordan(const BitMatrix &a,
const BitMatrix &b) {
if (a.width() + b.width() <= 64) return gauss_jordan_content<64>(a, b);
if (a.width() + b.width() <= 2600) return gauss_jordan_content<2600>(a, b);
return gauss_jordan_content<100010>(a, b);
}
static pair<vector<int>, vector<vector<int>>> linear_equations(
const BitMatrix &a, const vector<int> &b) {
int n = a.height(), m = a.width();
BitMatrix B(n, 1);
for (int i = 0; i < n; i++) B[i][0] = b[i];
auto p = Gauss_Jordan(a, B);
vector<int> jdx(n, -1), idx(m, -1);
for (int i = 0, j; i < n; i++) {
for (j = 0; j < m; j++) {
if (p.first[i][j]) {
jdx[i] = j, idx[j] = i;
break;
}
}
if (j == m && p.second[i][0])
return make_pair(vector<int>(), vector<vector<int>>()); // no solutions
}
vector<int> c(m);
vector<vector<int>> d;
for (int j = 0; j < m; j++) {
if (idx[j] != -1)
c[j] = p.second[idx[j]][0];
else {
vector<int> v(m);
v[j] = 1;
for (int i = 0; i < n; i++)
if (jdx[i] != -1) v[jdx[i]] = p.first[i][j];
d.push_back(v);
}
}
return make_pair(c, d);
}
int rank() const {
int n = height(), m = width();
BitMatrix b(n, 0);
BitMatrix p = Gauss_Jordan(*this, b).first;
for (int i = 0, j; i < n; i++) {
for (j = 0; j < m; j++)
if (p[i][j] != 0) break;
if (j == m) return i;
}
return n;
}
private:
template <size_t SIZE>
BitMatrix mul(const BitMatrix &b) const {
size_t n = height(), m = width(), l = b.width();
assert(m == b.height());
vector<bitset<SIZE>> tb(l);
for (int i = 0; i < l; ++i)
for (int j = 0; j < m; ++j) tb[i][j] = b[j][i];
BitMatrix c(n, l);
for (int i = 0; i < n; i++) {
bitset<SIZE> abit;
for (int k = 0; k < m; k++) abit[k] = (*this)[i][k];
for (int j = 0; j < l; j++) c[i][j] = ((abit & tb[j]).count() & 1);
}
return c;
}
template <size_t SIZE>
static pair<BitMatrix, BitMatrix> gauss_jordan_content(const BitMatrix &a,
const BitMatrix &b) {
size_t n = a.height(), m = a.width(), l = b.width();
vector<bitset<SIZE>> c(n);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) c[i][j] = a[i][j];
for (int i = 0; i < n; i++)
for (int j = 0; j < l; j++) c[i][j + m] = b[i][j];
int d = 0;
for (int j = 0; j < m; j++) {
int p = d;
for (int i = d + 1; i < n; i++)
if (c[i][j]) p = i;
if (!c[p][j]) continue;
swap(c[p], c[d]);
for (int i = 0; i < n; i++)
if (i != d && c[i][j]) c[i] ^= c[d];
d++;
}
BitMatrix reta(n, m), retb(n, l);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) reta[i][j] = c[i][j];
for (int i = 0; i < n; i++)
for (int j = 0; j < l; j++) retb[i][j] = c[i][j + m];
return make_pair(reta, retb);
}
};
signed main() {
cin.tie(0);
ios::sync_with_stdio(0);
int N, M, X;
cin >> N >> M >> X;
BitMatrix A(30 + M, N);
vector<int> b(30 + M);
for (int i = 0; i < 30; i++) {
b[i] = (X >> i) & 1;
}
for (int j = 0; j < N; j++) {
int a;
cin >> a;
for (int i = 0; i < 30; i++) {
A[i][j] = (a >> i) & 1;
}
}
for (int i = 0; i < M; i++) {
int type, l, r;
cin >> type >> l >> r;
l--, r--;
for (int j = l; j <= r; j++) {
A[30 + i][j] = 1;
}
b[30 + i] = type;
}
auto ans = BitMatrix::linear_equations(A, b);
if (ans.first.size())
cout << ModInt<int(1e9 + 7)>(2).pow(ans.second.size()) << endl;
else
cout << 0 << endl;
return 0;
}
hashiryo